

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	CGAT documentation

Welcome to the CGAT code collection

This document brings together the various pipelines and scripts
written before and during CGAT.

Note

The documentation is under construction.

The CGAT Code collection is documented here.

Overview

The CGAT code collection has grown out of the work in comparative genomics
by the Ponting group in the last decade. Now, CGAT has added
functionality to do next-generation sequencing analysis.

The collection has three major components, these are directories in
the package.

	Scripts
A collection of useful scripts for genomics and NGS analysis

	Modules
A collection of modules with utility functions for genomics and NGS analysis.

	CGAT Pipelines
A collection of pipelines for common workflows in genomics and NGS analysis.

Scripts and modules

The CGAT code collection is as set of tools and modules for genomics.
Most of these scripts are written in python. The tools are grouped by topic:

	Scripts
	Genomics

	Trees

	Alignment

	Visualization

	Graphs

	Sequences and rates

	Matrices and Tables

	Stats

	Tools

	Unsorted

	Modules
	Genomics

	Phylogeny

	Parsers and wrappers

	Math and Stats

	Gpipe and OPTIC

	Tools

	Pipelines

	Plotting

	Other

	Obsolete

	Unsorted

CGAT Pipelines

CGAT pipelines perform basic tasks, are fairly generic and might be of wider interest.

	CGAT Pipelines
	Installing CGAT pipelines

	Using CGAT pipelines

	Building CGAT pipelines

	Writing pipeline reports

	Background

	NGS Pipelines

	Lecgacy pipelines

Developer’s guide

	Contributing to CGAT code
	Checklist for new scripts/modules

	Building extensions

	Testing
	Testing scripts

	Testing modules

	Testing pipelines

	Style Guide
	Coding style

	Where to put code

	Pipelines

	Other guidelines

	Documentation

	Documentation
	Overview

	Building the documentation

	Writing documentation

	Adding documentation

	Requisites

	Release notes
	Contributions

	Importing CGAT scripts into galaxy
	General Preparation

	Adding a script manually

	Automatic conversion of scripts

Glossary

	File formats

	Other terms

Disclaimer

The collection of scripts and tools is the outcome of 10 years working in various
fields in bioinformatics. It contains both the good, the bad and the ugly.
Use at your own risk.

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

Scripts

This document contains all the scripts for/by CGAT.
Scripts are written to be called from the command line.

Genomics

Trees

Alignment

Visualization

Graphs

Sequences and rates

Matrices and Tables

Stats

Tools

Databases

Cluster and jobs

Other

	cgat_html_add_toc.py - insert table of contents in html document

Unsorted

	mali_phylip2fasta.py -

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Scripts

cgat_html_add_toc.py - insert table of contents in html document

	Author:	Andreas Heger

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

Purpose

Read an html document on stdin and add a table of contents
based on section headings in the document.

This document uses the <h1></h1>, <h2></h2>, ... html tags.

Usage

Example:

python cgat_html_add_toc.py --help

Type:

python cgat_html_add_toc.py --help

for command line help.

Command line options

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Scripts

mali_phylip2fasta.py -

	Author:	Andreas Heger

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

Purpose

Todo

describe purpose of the script.

Usage

Example:

python mali_phylip2fasta.py --help

Type:

python mali_phylip2fasta.py --help

for command line help.

Command line options

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

Modules

Contents:

Genomics

	AString.py - a compact string of characters

	FastaIterator.py - iterate over fasta files

	Intervals.py -

	Mali.py - Tools for multiple alignments

	MaliIO.py -

	GenomicIO.py - Subroutines for working on I/O of large genomic files

	Maq.py -

	AGP.py - working with AGP files

	Regions.py - helper functions for working with genomic segments

	ProfileLibrary.py -

	ProfileLibraryCompass.py -

Phylogeny

	PamMatrices.py -

Parsers and wrappers

	WrapperAdaptiveCAI.py -

	WrapperBl2Seq.py -

	WrapperENC.py -

	WrapperMuscle.py -

Math and Stats

	CorrespondenceAnalysis.py -

	Histogram.py - Various functions to deal with histograms

	Histogram2D.py - functions for handling two-dimensional histograms.

	MatlabTools.py -

Gpipe and OPTIC

	Exons.py - A library to read/write/manage exons.

	Orthologs.py - tools to deal with Leo’s orthology pipeline.

	BlastAlignments.py - tools for working with alignments

Tools

	Experiment.py - Tools for scripts

	CSV.py - Tools for parsing CSV files

	IOTools - tools for I/O operations

	Iterators.py - general purpose iterators.

	Database.py -

	ExternalList.py - large disk-based lists

	ProgressBar.py -

Pipelines

	PipelineTracks.py - Definition of tracks in pipelines

	PipelineTracks.py - Definition of tracks in pipelines

Plotting

modules/GDLDraw.rst

Other

	RLE.py - a simple run length encoder

	SVGdraw.py - generate SVG drawings

	SetTools.py - Tools for working on sets
	Code

	Sockets.py - working with sockets

	GraphTools.py -
	Code

	Cluster.py - module for running a job in parallel on the cluster

Obsolete

	Intervalls.py -
	Code

	IntervallsWeigted.py - working with weigted intervals

	SaryFasta.py - index fasta files by suffix array

	Fasta.py - Methods for dealing with fasta files.

	SuffixArray.py - sarry frontend
	Code

Unsorted

Modules not sorted into categories.

	BlatTest.py -
	Code

	CBioPortal.py - Interface with the Sloan-Kettering cBioPortal webservice

	CSV2DB.py - utilities for uploading a table to database
	Purpose

	Usage

	Documentation

	Code

	GDLDraw.py -
	Code

	Glam2.py - Parser for MAST files.

	Glam2Scan.py - Parser for MAST files

	IGV.py - Simple wrapper to the IGV socket interface

	Logfile.py - logfile parsing
	Purpose

	Usage

	Documentation

	Code

	MAST.py - Parser for MAST files

	Tophat.py - working with tophat/cufflinks output files
	Code

	VCF.py - Tools for working with VCF files
	Code

	MACS.py - Parser for MACS output
	API

	WrapperZinba.py - utility functions for zinba output
	Purpose

	Usage

	Documentation

	Code

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

AString.py - a compact string of characters

	Author:	Andreas Heger

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

Code

	
class AString.AString(*args)

	an array posing as a sequence.

This class conserves memory as it uses only 1 byte per letter,
while python strings use the machine word size for a letter.

It exports a mixture of the methods in the python string and
python array classes.

Note

Using this class will incur a heavy penalty compared to
using :class:array.array directly. Only use sparingly for
heavy computations.

	
upper()

	return upper case version.

	
lower()

	return lower case version.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

FastaIterator.py - iterate over fasta files

The difference to the biopython iterator is that this one
skips over comment lines starting with “#”.

Code

	
class FastaIterator.FastaIterator(f, *args, **kwargs)

	a iterator of fasta formatted files.

	
FastaIterator.iterate_together(*args)

	iterate synchronously over one or more fasta files.

The iteration finishes once any of the files is exhausted.

yield output tuples of sequences.

	
FastaIterator.count(filename)

	count number of sequences in fasta file.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

Intervals.py -

	Author:	Andreas Heger

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

Code

	
Intervals.combine(intervals)

	combine intervals.

Overlapping intervals are concatenated into larger intervals.

	
Intervals.prune(intervals, first=None, last=None)

	truncates all intervals that are extending beyond first or last.

Empty intervals are deleted.

	
Intervals.complement(intervals, first=None, last=None)

	complement a list of intervals with intervals not in list.

	
Intervals.addComplementIntervals(intervals, first=None, last=None)

	complement a list of intervals with intervals not
in list and return both.

	
Intervals.combineAtDistance(intervals, min_distance)

	combine a list intervals and merge those that are less than a certain
distance apart.

	
Intervals.DeleteSmallIntervals(intervals, min_length)

	combine a list of non-overlapping intervals,
and delete those that are too small.

	
Intervals.getIntersections(intervals)

	combine intervals.

Overlapping intervals are reduced to their intersection.

	
Intervals.RemoveIntervalsContained(intervals)

	remove intervals that are fully contained in another.

[(10, 100), (20, 50), (70, 120), (130, 200), (10, 50), (140, 210), (150, 200)]

results:

[(10, 100), (70, 120), (130, 200), (140, 210)]

	
Intervals.RemoveIntervalsSpanning(intervals)

	remove intervals that are full covering
another, i.e. always keep the smallest.

[(10, 100), (20, 50), (70, 120), (40,80), (130, 200), (10, 50), (140, 210), (150, 200)]

result:

[(20, 50), (40, 80), (70, 120), (150, 200)]

	
Intervals.ShortenIntervalsOverlap(intervals, to_remove)

	shorten intervals, so that there is no
overlap with another set of intervals.

assumption: intervals are not overlapping

	
Intervals.joined_iterator(intervals1, intervals2)

	iterate over the combination of two intervals.

returns the truncated intervals delineating the
ranges of overlap between intervals1 and intervals2.

	
Intervals.intersect(intervals1, intervals2)

	intersect two interval sets.

Return a set of intervals that is spanned by intervals in
both sets. Returns the union of the two intervals.

	
Intervals.getLength(intervals)

	return sum of intervals.

	
Intervals.truncate(intervals1, intervals2)

	truncate intervals in intervals1 by intervals2

Example: truncate([(0,5)], [(0,3)]) = [(3,5)]

	
Intervals.calculateOverlap(intervals1, intervals2)

	calculate overlap between intervals.

The intervals within each set should not be overlapping.

	
Intervals.fromArray(a)

	get intervals from a binary array.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

Mali.py - Tools for multiple alignments

	Author:	Andreas Heger

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

Code

	
class Mali.SequenceCollection

	Bases: Mali.Mali

reads in a sequence collection, but permits
several entries per id.

Note that this might cause problems with interleaved
formats like phylips or clustal.

This mapping is achieved by appending a numeric
suffix. The suffix is retained for the life-time
of the object, but not output to a file.

	
addEntry(s)

	add an aligned string object.

	
readFromFile(infile, format='fasta')

	read multiple alignment from file in various format.

	
addAnnotation(key, annotation)

	add annotation.

	
apply(f)

	apply function f to every row in the multiple alignment.

	
buildColumnMap(other, join_field=None)

	build map of columns in other to this.

	
checkLength()

	check lengths of aligned strings.

Return false if they are inconsistent.

	
clipByAnnotation(key, chars='')

	restrict alignment to positions where
annotation identified by key in chars.

if chars is empty, nothing is clipped.

	
copyAnnotations(other)

	copy annotations from annother mali.

	
filter(f)

	filter multiple alignment using function f.

The function f should return True for entries that
should be kept and False for those that should be removed.

	
getAlphabet()

	get alphabet from the multiple alignment.

Alphabet is “na”, if more than 90% of characaters are “actgxn”,
otherwise it is “aa”.

	
getAnnotation(key)

	return annotation associated with key.

	
getColumns()

	return mali in column orientation.

	
getConsensus(mark_with_gaps=False)

	return consensus string.

The consensus string returns the most frequent character per column
that is not a gap.
If mark_with_gaps is set to True, positions with any gap characater are
set to gaps.

	
getLength()

	deprecated.

	
getResidueNumber(key, position)

	return residue number in sequence key at position position.

	
getWidth()

	deprecated.

	
insertColumns(position, num_gaps, keep_fixed=None, char='-')

	insert gaps at position into multiple alignment.

if keep_constant is a list of identifiers, those are kept constant,
instead, gaps are added to the end.

	
lower()

	convert all characters in mali to lowercase.

	
lowerCase()

	set all characters to lower case.

	
mapColumns(columns, map_function)

	apply map_function to all residues in columns.

	
mapIdentifiers(map_old2new=None, pattern_identifier='ID%06i')

	map identifiers in multiple aligment.

if map_old2new is not given, a new map is created (map_new2old)

	
markCodons(mode='case')

	mark codons.

	
markTransitions(map_id2transitions, mode='case')

	mark transitions in the multiple alignment.

if mode == case, then upper/lower case is used for the transitions

Otherwise, a character given by mode is inserted.

	
maskColumn(column, mask_char='x')

	mask a column.

	
maskColumns(columns, mask_char='x')

	mask columns in a multiple alignment.

	
propagateMasks(min_chars=1, mask_char='x')

	propagate masked characters to all rows of a multiple alignment
within a column.

If there is at least min_chars in a mali column, that are masks,
propagate the masks to all other rows.

	
propagateTransitions(min_chars=1)

	propagate lower case in a column to all residues.

	
recount(reset_first=False)

	recount residue in alignments.

	
removeEmptySequences()

	remove sequences that are completely empty.

	
removeEndGaps()

	remove end gaps.

end gaps do not include any characters and thus
the alignment coordinates won’t change.

	
removeGaps(allowed_gaps=0, minimum_gaps=1, frame=1)

	remove gappy columns.

allowed_gaps: number of gaps allowed for column to be kept
minimum_gaps: number of gaps for column to be removed

set minimum_gaps to the number of sequences to remove columns
with all gaps.

If frame is > 1 (3 most likely), then a whole codon is removed
as soon as there is one column to be removed.

	
removePattern(match_function, allowed_matches=0, minimum_matches=1, delete_frame=1, search_frame=1)

	remove columns (or group of columns), that match a certain pattern.

allowed_matches: number of matches allowed so that column is still kept
minimum_matches: number of matches required for column to be removed

set minimum_matches to the number of sequences to remove columns
with all gaps.

Patterns are matches in search_frame. For example, if frame is 3,
whole codons are supplied to match_function.

delete_frame specifies the frame for deletion. If it is set to 3,
codons are removed if already one column matches.

Example: remove all columns that contain at least one stop-codon:

	removePattern(lambda x: x.upper() in (“TAG”, “TAA”, “TGA”),

	allowed_matches = 0,
minimum_matches = 1,
search_frame = 3,
delete_frame = 3)

	
removeUnalignedEnds()

	remove unaligned ends in the multiple alignment.

unaligned ends correspond to lower-case characters.

	
rename(old_name, new_name)

	rename an entry.

	
setAnnotation(key, value)

	set annotation associated with key to value.

	
shiftAlignment(map_id2offset)

	shift alignment by offset.

	
shuffle(frame=1)

	shuffle multiple alignment.

The frame determines the block size for shuffling. Use 3 for codons in
a multiple alignment without frame-shifts.

	
takeColumns(columns)

	restrict alignments to certain columns.

	
truncate(first, last)

	truncate alignment within range.

	
upper()

	convert all characters in mali to uppercase.

	
upperCase()

	set all characters to upper case.

	
writeToFile(outfile, write_ranges=True, format='plain', options=None)

	write alignment to file.

If options is given, these lines are output into the multiple alignment.

	
Mali.convertMali2Alignlib(mali)

	convert a multiple alignment of type Mali
into an alignlib_lite.py_multiple alignment object.

	
Mali.convertAlignlib2Mali(mali, identifiers=None, seqs=None)

	convert a multiple alignment into an alignlib_lite.py_multiple alignment object.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

MaliIO.py -

	Author:	Andreas Heger

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

Code

	
MaliIO.writeFasta(outfile, mali, line_width=60, identifiers=None, skip_first=0, gap_char=None)

	print multiple alignment in fasta format.

	
MaliIO.WriteMODELLER(outfile, mali, line_width=60, identifiers=None, skip_first=0, gap_char=None)

	print multiple alignment in PIR (MODELLER) format.
example:

>P1;5fd1
structureX:5fd1:1 : :106 : :ferredoxin:Azotobacter vinelandii: 1.90: 0.19
AFVVTDNCIKCKYTDCVEVCPVDCFYEGPNFLVIHPDECIDCALCEPECPAQAIFSEDEVPEDMQEFIQLNAELA
EVWPNITEKKDPLPDAEDWDGVKGKLQHLER*

	
MaliIO.writeClustalW(outfile, mali, line_width=60, identifiers=None)

	print alignment in ClustalW format.
(have to still look up the format, dsc can read it.)

	
MaliIO.readPicasso(infile)

	read alignment in the non-defined picasso format.

	
MaliIO.compressAlignment(alignment, gap_character='-', ignore_beginning=0)

	compress an alignment string.
Lower-case characters at the beginning are ignored if so wished.
–xxabBCDEfgHI
becomes:
-6+4

This was necessary for radar output (e.g., 46497)

	
MaliIO.readFasta(infile, pattern_identifier='\\S+')

	read alignment in fasta format.

	
MaliIO.convertGaps(mali, old_gap='.', new_gap='-')

	convert gaps characters in mali.

	
MaliIO.removeGappedColumns(mali, gap_char='-')

	remove all gapped columns in mali.

	
MaliIO.getSubset(mali, identifiers, not_in_set=False)

	return subset of mali which only contains identifiers.

	
MaliIO.getFrameColumnsForMaster(mali, master, gap_char='-')

	get columns in frame according to master.

	
MaliIO.getFrameColumnsForMasterPattern(mali, identifiers, master_pattern, gap_char='-')

	get columns in frame for all masters matching the pattern.

	
MaliIO.getMapFromMali(seq1, seq2, gap_char='-')

	build map of positions between mali.

	
MaliIO.getCodonSequence(sequence, frame_columns, gap_char='-', remove_stops=True)

	return a pruned sequence given frame columns.

everything not in frame is deleted, only complete codons are kept.

	
MaliIO.getPercentIdentity(seq1, seq2, gap_char='-')

	get number of identical residues between seq1 and seq2.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

GenomicIO.py - Subroutines for working on I/O of large genomic files

	Author:	

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

I tried the Biopython parser, but it was too slow for large genomic chunks.

	
GenomicIO.index_file(filenames, db_name)

	index file/files.

Two new files are create - db_name.fasta and db_name.idx

	
GenomicIO.index_exists(filename)

	check if a certain file has been indexed.

	
GenomicIO.getSequence(db_name, sbjct_token, sbjct_strand, sbjct_from, sbjct_to, as_array=False, forward_coordinates=False)

	get genomic fragment.

	
GenomicIO.splitFasta(infile, chunk_size, dir='/tmp', pattern=None)

	split a fasta file into a subset of files.

If pattern is not given, random file names are chosen.

	
GenomicIO.getConverter(format)

	return a converter function for
converting various coordinate schemes into
0-based, both strand, closed-open ranges.

converter functions have the parameters
x, y, s, l: with x and y the coordinates of
a sequence fragment, s the strand (True is positive)
and l being the length of the contig.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

Maq.py -

	Author:	Andreas Heger

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

Code

	
exception Maq.Error

	Bases: exceptions.Exception

Base class for exceptions in this module.

	
exception Maq.ParsingError(message, line=None)

	Bases: Maq.Error

Exception raised for errors while parsing

	Attributes:

	message – explanation of the error

	
class Maq.Match

	a maq match.

	
Maq.iterator(infile)

	iterate over the contents of a maq file.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

AGP.py - working with AGP files

	Author:	Andreas Heger

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

to assemble contigs to scaffolds.

Code

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

Regions.py - helper functions for working with genomic segments

Version: $Id: Regions.py 2781 2009-09-10 11:33:14Z andreas $

	
class Regions.RegionFilter

	Filter class based on regions.

	
readFromFile(infile, ignore_strand=False)

	read regions from a file.

	
getOverlaps(sbjct_token, sbjct_strand, sbjct_from, sbjct_to)

	return overlapping regions with region.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

ProfileLibrary.py -

	Author:	Andreas Heger

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

Code

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

ProfileLibraryCompass.py -

	Author:	Andreas Heger

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

Code

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

PamMatrices.py -

	Author:	Andreas Heger

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

Code

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

WrapperAdaptiveCAI.py -

	Author:	Andreas Heger

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

Code

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

WrapperBl2Seq.py -

	Author:	Andreas Heger

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

Code

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

WrapperENC.py -

	Author:	Andreas Heger

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

Code

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

WrapperMuscle.py -

	Author:	Andreas Heger

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

Code

	
exception WrapperMuscle.Error

	Bases: exceptions.Exception

Base class for exceptions in this module.

	
exception WrapperMuscle.ParsingError(message, line)

	Bases: WrapperMuscle.Error

Exception raised for errors while parsing

	Attributes:

	message – explanation of the error

	
exception WrapperMuscle.UsageError(message)

	Bases: WrapperMuscle.Error

Exception raised for errors while starting

	Attributes:

	message – explanation of the error

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

CorrespondenceAnalysis.py -

	Author:	Andreas Heger

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

Code

	
CorrespondenceAnalysis.GetIndices(matrix)

	return order (1st eigenvector) of row and column indicies.

This procedure fails if there are row or columns with a sum of 0.

	
CorrespondenceAnalysis.GetPermutatedMatrix(matrix, map_row_new2old, map_col_new2old, row_headers=None, col_headers=None)

	return a permuted matrix. Note, that currently this is very
inefficient, as I do not know how to do this in numpy.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

Histogram.py - Various functions to deal with histograms

	Author:	

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

Histograms can be calculated from a list/tuple/array of
values. The histogram returned is then a list of tuples
of the format [(bin1,value1), (bin2,value2), ...].

	
Histogram.CalculateFromTable(dbhandle, field_name, from_statement, num_bins=None, min_value=None, max_value=None, intervals=None, increment=None)

	get a histogram using an SQL-statement.
Intervals can be either supplied directly or are build
from the data by providing the number of bins and optionally
a minimum or maximum value.

If no number of bins are provided, the bin-size is 1.

This command uses the INTERVAL command from MYSQL, i.e. a bin value
determines the upper boundary of a bin.

	
Histogram.CalculateConst(values, num_bins=None, min_value=None, max_value=None, intervals=None, increment=None, combine=None)

	calculate a histogram based on a list or tuple of values.

	
Histogram.Calculate(values, num_bins=None, min_value=None, max_value=None, intervals=None, increment=None, combine=None, no_empty_bins=0, dynamic_bins=False, ignore_out_of_range=True)

	calculate a histogram based on a list or tuple of values.

use scipy for calculation.

	
Histogram.Scale(h, scale=1.0)

	rescale bins in histogram.

	
Histogram.Convert(h, i, no_empty_bins=0)

	add bins to histogram.

	
Histogram.Combine(source_histograms, missing_value=0)

	combine a list of histograms
Each histogram is a sorted list of bins and counts.
The counts can be tuples.

	
Histogram.Print(h, intervalls=None, format=0, nonull=None, format_value=None, format_bin=None)

	print a histogram.

A histogram can either be a list/tuple of values or
a list/tuple of lists/tuples where the first value contains
the bin and second contains the values (which can again be
a list/tuple).

	format

	0 = print histogram in several lines
1 = print histogram on single line

	
Histogram.Write(outfile, h, intervalls=None, format=0, nonull=None, format_value=None, format_bin=None)

	print a histogram.

A histogram can either be a list/tuple of values or
a list/tuple of lists/tuples where the first value contains
the bin and second contains the values (which can again be
a list/tuple).

	Parameters:	format – output format.
0 = print histogram in several lines,
1 = print histogram on single line

	
Histogram.Fill(h)

	fill every empty value in histogram with
previous value.

	
Histogram.Add(h1, h2)

	adds values of histogram h1 and h2 and
returns a new histogram

	
Histogram.SmoothWrap(histogram, window_size)

	smooth histogram by sliding window-method, where
the window is wrapped around the borders. The sum of
all values is entered at center of window.

	
Histogram.PrintAscii(histogram, step_size=1)

	print histogram ascii-style.

	
Histogram.Count(data)

	count categorized data. Returns a list
of tuples with (count, token).

	
Histogram.Accumulate(h, num_bins=2, direction=1)

	add successive counts in histogram.
Bins are labelled by group average.

	
Histogram.Cumulate(h, direction=1)

	calculate cumulative distribution.

	
Histogram.AddRelativeAndCumulativeDistributions(h)

	adds relative and cumulative percents to a histogram.

	
Histogram.histogram(values, mode=0, bin_function=None)

	Return a list of (value, count) pairs, summarizing the input values.
Sorted by increasing value, or if mode=1, by decreasing count.
If bin_function is given, map it over values first.
Ex: vals = [100, 110, 160, 200, 160, 110, 200, 200, 220]
histogram(vals) ==> [(100, 1), (110, 2), (160, 2), (200, 3), (220, 1)]
histogram(vals, 1) ==> [(200, 3), (160, 2), (110, 2), (100, 1), (220, 1)]
histogram(vals, 1, lambda v: round(v, -2)) ==> [(200.0, 6), (100.0, 3)]

	
Histogram.cumulate(histogram)

	cumulate histogram in place.

histogram is list of (bin, value) or (bin, (values,))

	
Histogram.normalize(histogram)

	normalize histogram in place.

histogram is list of (bin, value) or (bin, (values,))

	
Histogram.fill(iterator, bins)

	fill a histogram from bins.

The values are given by an iterator so that the histogram
can be built on the fly.

Description:

Count the number of times values from array a fall into
numerical ranges defined by bins. Range x is given by
bins[x] <= range_x < bins[x+1] where x =0,N and N is the
length of the bins array. The last range is given by
bins[N] <= range_N < infinity. Values less than bins[0] are
not included in the histogram.

	Arguments:

	iterator – The iterator.
bins – 1D array. Defines the ranges of values to use during
histogramming.

Returns:
1D array. Each value represents the occurences for a given
bin (range) of values.

	
Histogram.fillHistograms(infile, columns, bins)

	fill several histograms from several columns in a file.

The histograms are built on the fly.

Description:

Count the number of times values from array a fall into
numerical ranges defined by bins. Range x is given by
bins[x] <= range_x < bins[x+1] where x =0,N and N is the
length of the bins array. The last range is given by
bins[N] <= range_N < infinity. Values less than bins[0] are
not included in the histogram.

	Arguments:

	file – The input file.
columns – columns to use
bins – a list of 1D arrays. Defines the ranges of values to use during
histogramming.

Returns:
a list of 1D arrays. Each value represents the occurences for a given
bin (range) of values.

WARNING: missing value in columns are ignored

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

Histogram2D.py - functions for handling two-dimensional histograms.

	Author:	

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

	
Histogram2D.Calculate(values, mode=0, bin_function=None)

	Return a list of (value, count) pairs, summarizing the input values.
Sorted by increasing value, or if mode=1, by decreasing count.

If bin_function is given, map it over values first.

	
Histogram2D.Print(h, bin_function=None)

	print a histogram.

A histogram can either be a list/tuple of values or
a list/tuple of lists/tuples where the first value contains
the bin and second contains the values (which can again be
a list/tuple).

	Parameters:	format – output format.
0 = print histogram in several lines,
1 = print histogram on single line

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

MatlabTools.py -

	Author:	Andreas Heger

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

Code

	
MatlabTools.WriteMatrix(matrix, outfile=<open file '<stdout>', mode 'w' at 0x7fcdf3ea9150>, separator='\t', format='%f', row_headers=None, col_headers=None)

	write matrix to stream.

	
MatlabTools.ReadMatrix(file, separator='\t', numeric_type=<type 'float'>, take='all', headers=False)

	read a matrix. There probably is a routine for this in Numpy, which
I haven’t found yet.

	
MatlabTools.ReadSparseMatrix(filename, separator='\t', numeric_type=<type 'float'>, is_symmetric=None)

	read sparse matrix.

	
MatlabTools.ReadBinarySparseMatrix(filename, separator='\t', numeric_type=<type 'float'>, is_symmetric=None)

	read sparse matrix.

	
MatlabTools.readMatrix(infile, format='full', separator='\t', numeric_type=<type 'float'>, take='all', headers=True, missing=None)

	read a matrix from file ane return a numpy matrix.

formats accepted are:
* full
* sparse
* phylip

	
MatlabTools.writeMatrix(outfile, matrix, format='full', separator='\t', value_format='%f', row_headers=None, col_headers=None)

	write matrix to stream.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

Exons.py - A library to read/write/manage exons.

	Author:	

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

	
class Exons.Exon

	class for exons.

contains info about the genomic location of an exon
and its location within a peptide sequence.

The field mAlignment is set optionally.

	
Read(line, contig_sizes={}, format='exons', extract_id=None, converter=None)

	read exon from tab-separated line.

extract_id is a regular expression object to extract the identifier from
the identifier column.

if converter is given, it is used to convert to
zero-based open-closed both strand coordinates.

	
Merge(other)

	Merge this exon with another (adjacent and preceeding) exon.

Do not merge if the distance between exons is not divisible by 3.
Merging of two exons invalidated peptide coordinates for all following
exons. These need to be updated.

	
InvertGenomicCoordinates(lgenome)

	invert genomic alignment on sequence.

Negative strand is calculated from the other end.

	
Exons.UpdatePeptideCoordinates(exons)

	updates peptides coordinates for a list of exons.

Exons have to be sorted.

	
Exons.PostProcessExons(all_exons, do_invert=None, remove_utr=None, filter=None, reset=False, require_increase=False, no_invert=False, contig_sizes={}, from_zero=False, delete_missing=False, set_peptide_coordinates=False, set_rank=False)

	do post-processing of exons

exons is a dictionary of lists of exons.

Exons are sorted by mPeptideFrom.

Operations include:

-invert: sort out forward/reverse strand coordinates

	-set_peptide_coordinates: sets the peptide coordinates of

	exons.

-set-rank: set rank of exons

-remove_utr: remove any utr (needs peptide coordinates)

	-delete_missing: if set set true, exons on contigs not in contig_sizes

	will be deleted.

-from_zero: exon genomic coordinates start at 0

-reset: exon genomic coordinates start 0

	
Exons.GetExonBoundariesFromTable(dbhandle, table_name_predictions='predictions', table_name_exons='exons', only_good=False, do_invert=None, remove_utr=None, filter=None, reset=False, require_increase=False, contig_sizes={}, prediction_ids=None, table_name_quality='quality', table_name_redundant='redundant', non_redundant_filter=False, schema=None, quality_filter=None, from_zero=False, delete_missing=False)

	get exon boundaries from table.

	
Exons.CountNumExons(exons)

	return hash with number of exons per entry.

	
Exons.SetRankToPositionFlag(exons)

	set rank for all exons.

Set rank to
1 : if it is first exon,
-1: if it is the last exon (single exon genes are -1)
0 : if it is an internal exon.

	
Exons.ReadExonBoundaries(file, do_invert=None, remove_utr=None, filter=None, reset=False, require_increase=False, no_invert=False, contig_sizes={}, converter=None, from_zero=False, delete_missing=False, format='exons', gtf_extract_id=None)

	read exons boundaries from tab separated file.

if remove_utr is set, the UTR of the first/last exon is removed.

if reset is set, then the genomic part is moved so that it starts at 1.
if require_increase is set, then exons are sorted in increasing order.

If do_invert is set: negative strand coordinates are converted to positive
strand coordinates

if no_invert is set: coordinates are kept as they are.

if from_zero is set: coordinates are mapped from 0. Thus reverse
strand coordinates will be negative.

if delete_missing is True and sbjct-token is not in contig_sizes
but the exon needs to be inverted: delete transcript.

The exon file format is tab-separated and can be of the two formats:

format=”exons”:
id, contig, strand, frame, rank, peptide_from, peptide_to, genome_from, genome_to

format = “gtf”:
contig, ignored, ignored, genome_from, genome_to, ignored, strand, frame, id

if converter is given, use it to convert to forward/reverse strand coordinates.

gtg_extract_id: regular expression object to extract id from id column.

	
Exons.Alignment2Exons(alignment, query_from=0, sbjct_from=0, add_stop_codon=1)

	convert a Peptide2DNA alignment to exon boundaries.

	
Exons.Exons2Alignment(exons)

	build alignment string from a (sorted) list of exons.

	
Exons.RemoveRedundantEntries(l)

	remove redundant entries (and 0s) from list.

One liner?

	
Exons.CompareGeneStructures(xcmp_exons, ref_exons, map_ref2cmp=None, cmp_sequence=None, ref_sequence=None, threshold_min_pide=0, threshold_slipping_exon_boundary=9, map_cmp2ref=None, threshold_terminal_exon=15)

	Compare two gene structures.

This function is useful for comparing the exon boundaries of
a predicted peptide with the exon boundaries of the query peptide.

cmp_exons are exons for the gene to test.
ref_exons are exons from the reference.

Exon boundaries are already mapped to the peptide for the
reference.

map_ref2cmp: Alignment of protein sequences for cmp and ref.
map_cmp2ref: Alignment of cmp to ref. If given, mapping is done from cmp to ref.
Invalid exon boundaries can be set to -1.

	threshold_terminal_exon:

	Disregard terminal exons for counting missed boundaries, if they are
maximum x nucleotides long.

	
Exons.MapExons(exons, map_a2b)

	map peptide coordinates of exons with map.

returns a list of mapped exons.

	
Exons.CountMissedBoundaries(cmp_boundaries, reference_boundaries, max_slippage=9, min_from=0, max_to=0)

	count missed boundaries comparing cmp to ref.

	
Exons.GetExonsRange(exons, first, last, full=True, min_overlap=0, min_exon_size=0)

	get exons in range (first:last) (peptide coordinates).

Set full to False, if you don’t require full coverage.

	
Exons.ClusterByExonIdentity(exons, max_terminal_num_exons=3, min_terminal_exon_coverage=0.0, max_slippage=0, loglevel=0)

	build clusters of transcripts with identical exons.

The boundaries in the first/last exon can vary.

Returns two maps map_cluster2transcripts and
map_transcript2cluster

	
Exons.ClusterByExonOverlap(exons, min_overlap=0, min_min_coverage=0, min_max_coverage=0, loglevel=0)

	build clusters of transcripts with overlapping exons.

Exons need not be identical.

Returns two maps map_cluster2transcripts and
map_transcript2cluster

	
Exons.CheckOverlap(exons1, exons2, min_overlap=1)

	check if exons overlap.

(does not check chromosome and strand.)

	
Exons.CheckCoverage(exons1, exons2, max_terminal_num_exons=3, min_terminal_exon_coverage=0.0, max_slippage=0)

	check if one set of exons covers the other.

Note: does not check chromosome and strand, just genomic coordinates.

	
Exons.CheckContainedAinB(exons1, exons2, min_terminal_exon_coverage=0.0, loglevel=0)

	check if all exons in exons1 are contained in exons2.

Note: does not check contig and strand.

	
Exons.CheckCoverageAinB(exons1, exons2, min_terminal_num_exons=3, min_terminal_exon_coverage=0.0, max_slippage=0, loglevel=0)

	check if exons1 are all in exons2

Note: does not check contig and strand.

	
Exons.GetPeptideLengths(exons)

	for all exons get maximum length in coding nucleotides.

	
Exons.GetGenomeLengths(exons)

	for all exons get maximum nucleotide.

	
Exons.CalculateStats(exons)

	calculate some statistics for all exons.

minimum/maximum intron/exon length, number of exons
gene length

	
Exons.MatchExons(map_a2b, in_exons1, in_exons2, threshold_slipping_boundary=9)

	returns a list of overlapping exons (mapped via map_a2b).

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

Orthologs.py - tools to deal with Leo’s orthology pipeline.

	Author:	

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

	
Orthologs.FilterBDGP(data)

	remove genes that are

transcripts from BDGP and genes from ENSEMBL.

If only BDGP genes are present, keep them.

	
Orthologs.GetGenes(transcripts)

	from a list of transcripts get genes.

	
Orthologs.ReadInterpretation(infile, separator, genome1=None, genome2=None, filter_restrict_genes1={}, filter_restrict_genes2={}, filter_remove_transcripts1={}, filter_remove_transcripts2={}, filter_restrict_transcripts1={}, filter_restrict_transcripts2={})

	read interpretation file.

	
Orthologs.ReadOrphans(infile, separator, genome1=None, genome2=None, filter_restrict_genes1={}, filter_restrict_genes2={}, filter_remove_transcripts1={}, filter_remove_transcripts2={}, filter_restrict_transcripts1={}, filter_restrict_transcripts2={})

	read interpretation file.

	
Orthologs.ClusterOrthologsByGenes(orthologs)

	cluster orthologs by genes.

if an orthologous cluster contains the same genes in
either species, they are merged.

	
Orthologs.GetDegeneracy(t1, t2)

	get degeneracy of orthology assignments.

given are two lists of transcripts.
returns a tuple with gene and transcript degeneracy code, respectively.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

BlastAlignments.py - tools for working with alignments

	Author:	Andreas Heger

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

Code

	
class BlastAlignments.Map

	a blast alignment.

	
MapRange(query_token, query_from, query_to)

	map something.

	
GetClone()

	get copy of self.

	
BlastAlignments.ReadMap(file, multiple=False)

	read a map from a file.

If multiple is true, return a list of mappings.

	
BlastAlignments.iterator_links(infile)

	a simple iterator over all entries in a file.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

Experiment.py - Tools for scripts

	Author:	Andreas Heger

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

The Experiment modules contains utility functions for logging
and record keeping of scripts.

This module is imported by most CGAT scripts. It provides convenient
and consistent methods for

	Record keeping

	Benchmarking

See <no title> on how to use this module.

The basic usage of this module within a script is:

"""script_name.py - my script

Mode Documentation
"""
import sys
import optparse
import CGAT.Experiment as E

def main(argv = None):
 """script main.

 parses command line options in sys.argv, unless *argv* is given.
 """

 if not argv: argv = sys.argv

 # setup command line parser
 parser = E.OptionParser(version = "%prog version: Id",
 usage = globals()["__doc__"])

 parser.add_option("-t", "--test", dest="test", type="string",
 help="supply help")

 ## add common options (-h/--help, ...) and parse command line
 (options, args) = E.Start(parser)

 # do something
 # ...
 E.info("an information message")
 E.warn("a warning message")

 ## write footer and output benchmark information.
 E.Stop()

if __name__ == "__main__":
 sys.exit(main(sys.argv))

Record keeping

The central functions in this module are the Start() and
Stop() methods which are called before or after any work is done
within a script.

	
Experiment.Start(parser=None, argv=['/home/docs/checkouts/readthedocs.org/user_builds/cgat/envs/latest/bin/sphinx-build', '-b', 'epub', '-D', 'language=en', '.', '_build/epub'], quiet=False, no_parsing=False, add_csv_options=False, add_mysql_options=False, add_psql_options=False, add_pipe_options=True, add_cluster_options=False, add_output_options=False, return_parser=False)

	set up an experiment.

param parser an E.OptionParser instance with commandi line options.
param argv command line options to parse. Defaults to sys.argv [http://docs.python.org/2.7/library/sys.html#sys.argv]
quiet set loglevel to 0 - no logging
no_parsing do not parse command line options
return_parser return the parser object, no parsing
add_csv_options add common options for parsing tsv separated files
add_mysql_options add common options for connecting to mysql [https://mariadb.org/] databases
add_psql_options add common options for connecting to postgres [http://www.postgresql.org/] databases
add_pipe_options add common options for redirecting input/output
add_cluster_options add common options for scripts submitting jobs to the cluster
add_output_options add commond options for working with multiple output files
returns a tuple (options,args) with options (a E.OptionParser object

and a list of positional arguments.

The Start() method will also set up a file logger.

The default options added by this method are:

	-v/--verbose

	the loglevel

	timeit

	turn on benchmarking information and save to file

	timeit-name

	name to use for timing information,

	timeit-header

	output header for timing information.

Optional options added are:

add_csv_options

	dialect

	csv_dialect. the default is excel-tab, defaulting to tsv formatted files.

	add_psql_options

	
	-C/--connection

	psql connection string

	-U/--user

	psql user name

	add_cluster_options

	
	--use-cluster

	use cluster

	--cluster-priority

	cluster priority to request

	--cluster-queue

	cluster queue to use

	--cluster-num-jobs

	number of jobs to submit to the cluster at the same time

	--cluster-options

	additional options to the cluster for each job.

	add_output_options

	
	-P/--output-filename-pattern

	Pattern to use for output filenames.

The Start() is called with an E.OptionParser object.
Start() will add additional command line arguments, such as
--help for command line help or --verbose to control the loglevel.
It can also add optional arguments for scripts needing database access,
writing to multiple output files, etc.

Start() will write record keeping information to a logfile. Typically, logging
information is output on stdout, prefixed by a #, but it can be re-directed to
a separate file. Below is a typical output:

output generated by /ifs/devel/andreas/cgat/beds2beds.py --force --exclusive --method=unmerged-combinations --output-filename-pattern=030m.intersection.tsv.dir/030m.intersection.tsv-%s.bed.gz --log=030m.intersection.tsv.log Irf5-030m-R1.bed.gz Rela-030m-R1.bed.gz
job started at Thu Mar 29 13:06:33 2012 on cgat150.anat.ox.ac.uk -- e1c16e80-03a1-4023-9417-f3e44e33bdcd
pid: 16649, system: Linux 2.6.32-220.7.1.el6.x86_64 #1 SMP Fri Feb 10 15:22:22 EST 2012 x86_64
exclusive : True
filename_update : None
ignore_strand : False
loglevel : 1
method : unmerged-combinations
output_filename_pattern : 030m.intersection.tsv.dir/030m.intersection.tsv-%s.bed.gz
output_force : True
pattern_id : (.*).bed.gz
stderr : <open file '<stderr>', mode 'w' at 0x2ba70e0c2270>
stdin : <open file '<stdin>', mode 'r' at 0x2ba70e0c2150>
stdlog : <open file '030m.intersection.tsv.log', mode 'a' at 0x1f1a810>
stdout : <open file '<stdout>', mode 'w' at 0x2ba70e0c21e0>
timeit_file : None
timeit_header : None
timeit_name : all
tracks : None

The header contains information about:

	the script name (beds2beds.py)

	the command line options (--force --exclusive --method=unmerged-combinations --output-filename-pattern=030m.intersection.tsv.dir/030m.intersection.tsv-%s.bed.gz --log=030m.intersection.tsv.log Irf5-030m-R1.bed.gz Rela-030m-R1.bed.gz)

	the time when the job was started (Thu Mar 29 13:06:33 2012)

	the location it was executed (cgat150.anat.ox.ac.uk)

	a unique job id (e1c16e80-03a1-4023-9417-f3e44e33bdcd)

	the pid of the job (16649)

	the system specification (Linux 2.6.32-220.7.1.el6.x86_64 #1 SMP Fri Feb 10 15:22:22 EST 2012 x86_64)

It is followed by a list of all options that have been set in the script.

Once completed, a script will call the Stop() function to signify the end of the experiment.

	
Experiment.Stop()

	stop the experiment.

Stop() will output to the log file that the script has concluded successfully. Below is typical output:

job finished in 11 seconds at Thu Mar 29 13:06:44 2012 -- 11.36 0.45 0.00 0.01 -- e1c16e80-03a1-4023-9417-f3e44e33bdcd

The footer contains information about:

	the job has finished (job finished)

	the time it took to execute (11 seconds)

	when it completed (Thu Mar 29 13:06:44 2012)

	
	some benchmarking information (11.36 0.45 0.00 0.01) which is

	user time, system time, child user time, child system time.

	the unique job id (e1c16e80-03a1-4023-9417-f3e44e33bdcd)

The unique job id can be used to easily retrieve matching information from a concatenation of
log files.

Benchmarking

Complete reference

	
class Experiment.AppendCommaOption(*opts, **attrs)

	Bases: optparse.Option

Option with additional parsing capabilities.

	”,” in arguments to options that have the action ‘append’
are treated as a list of options. This is what galaxy does,
but generally convenient.

	Option values of “None” and “” are treated as default values.

	
class Experiment.OptionParser(*args, **kwargs)

	Bases: optparse.OptionParser [http://docs.python.org/2.7/library/optparse.html#optparse.OptionParser]

CGAT derivative of OptionParser.

	
add_option(Option)

	add_option(opt_str, ..., kwarg=val, ...)

	
check_values(values : Values, args : [string])

	-> (values : Values, args : [string])

Check that the supplied option values and leftover arguments are
valid. Returns the option values and leftover arguments
(possibly adjusted, possibly completely new – whatever you
like). Default implementation just returns the passed-in
values; subclasses may override as desired.

	
destroy()

	Declare that you are done with this OptionParser. This cleans up
reference cycles so the OptionParser (and all objects referenced by
it) can be garbage-collected promptly. After calling destroy(), the
OptionParser is unusable.

	
disable_interspersed_args()

	Set parsing to stop on the first non-option. Use this if
you have a command processor which runs another command that
has options of its own and you want to make sure these options
don’t get confused.

	
enable_interspersed_args()

	Set parsing to not stop on the first non-option, allowing
interspersing switches with command arguments. This is the
default behavior. See also disable_interspersed_args() and the
class documentation description of the attribute
allow_interspersed_args.

	
error(msg : string)

	Print a usage message incorporating ‘msg’ to stderr and exit.
If you override this in a subclass, it should not return – it
should either exit or raise an exception.

	
parse_args(args=None, values=None)

	
	parse_args(args : [string] = sys.argv[1:],

	values : Values = None)

-> (values : Values, args : [string])

Parse the command-line options found in ‘args’ (default:
sys.argv[1:]). Any errors result in a call to ‘error()’, which
by default prints the usage message to stderr and calls
sys.exit() with an error message. On success returns a pair
(values, args) where ‘values’ is an Values instance (with all
your option values) and ‘args’ is the list of arguments left
over after parsing options.

	
print_help(file : file = stdout)

	Print an extended help message, listing all options and any
help text provided with them, to ‘file’ (default stdout).

	
print_usage(file : file = stdout)

	Print the usage message for the current program (self.usage) to
‘file’ (default stdout). Any occurrence of the string “%prog” in
self.usage is replaced with the name of the current program
(basename of sys.argv[0]). Does nothing if self.usage is empty
or not defined.

	
print_version(file : file = stdout)

	Print the version message for this program (self.version) to
‘file’ (default stdout). As with print_usage(), any occurrence
of “%prog” in self.version is replaced by the current program’s
name. Does nothing if self.version is empty or undefined.

	
Experiment.openFile(filename, mode='r', create_dir=False)

	open file in filename with mode mode.

If create is set, the directory containing filename
will be created if it does not exist.

gzip - compressed files are recognized by the
suffix .gz and opened transparently.

Note that there are differences in the file
like objects returned, for example in the
ability to seek.

returns a file or file-like object.

	
Experiment.getHeader()

	return a header string with command line options and timestamp

	
Experiment.getParams(options=None)

	return a string containing script parameters.

Parameters are all variables that start with param_.

	
Experiment.getFooter()

	return a header string with command line options and
timestamp.

	
Experiment.Start(parser=None, argv=['/home/docs/checkouts/readthedocs.org/user_builds/cgat/envs/latest/bin/sphinx-build', '-b', 'epub', '-D', 'language=en', '.', '_build/epub'], quiet=False, no_parsing=False, add_csv_options=False, add_mysql_options=False, add_psql_options=False, add_pipe_options=True, add_cluster_options=False, add_output_options=False, return_parser=False)

	set up an experiment.

param parser an E.OptionParser instance with commandi line options.
param argv command line options to parse. Defaults to sys.argv [http://docs.python.org/2.7/library/sys.html#sys.argv]
quiet set loglevel to 0 - no logging
no_parsing do not parse command line options
return_parser return the parser object, no parsing
add_csv_options add common options for parsing tsv separated files
add_mysql_options add common options for connecting to mysql [https://mariadb.org/] databases
add_psql_options add common options for connecting to postgres [http://www.postgresql.org/] databases
add_pipe_options add common options for redirecting input/output
add_cluster_options add common options for scripts submitting jobs to the cluster
add_output_options add commond options for working with multiple output files
returns a tuple (options,args) with options (a E.OptionParser object

and a list of positional arguments.

The Start() method will also set up a file logger.

The default options added by this method are:

	-v/--verbose

	the loglevel

	timeit

	turn on benchmarking information and save to file

	timeit-name

	name to use for timing information,

	timeit-header

	output header for timing information.

Optional options added are:

add_csv_options

	dialect

	csv_dialect. the default is excel-tab, defaulting to tsv formatted files.

	add_psql_options

	
	-C/--connection

	psql connection string

	-U/--user

	psql user name

	add_cluster_options

	
	--use-cluster

	use cluster

	--cluster-priority

	cluster priority to request

	--cluster-queue

	cluster queue to use

	--cluster-num-jobs

	number of jobs to submit to the cluster at the same time

	--cluster-options

	additional options to the cluster for each job.

	add_output_options

	
	-P/--output-filename-pattern

	Pattern to use for output filenames.

	
Experiment.Stop()

	stop the experiment.

	
Experiment.benchmark(func)

	decorator collecting wall clock time spent in decorated method.

	
Experiment.cachedmethod(function)

	decorator for caching a method.

	
Experiment.cachedfunction

	Decorator that caches a function’s return value each time it is called.
If called later with the same arguments, the cached value is returned, and
not re-evaluated.

Taken from http://wiki.python.org/moin/PythonDecoratorLibrary#Memoize

	
Experiment.log(loglevel, message)

	log message at loglevel.

	
Experiment.info(message)

	log information message, see the logging [http://docs.python.org/2.7/library/logging.html#logging] module

	
Experiment.warning(message)

	log warning message, see the logging [http://docs.python.org/2.7/library/logging.html#logging] module

	
Experiment.warn(message)

	log warning message, see the logging [http://docs.python.org/2.7/library/logging.html#logging] module

	
Experiment.debug(message)

	log debugging message, see the logging [http://docs.python.org/2.7/library/logging.html#logging] module

	
Experiment.error(message)

	log error message, see the logging [http://docs.python.org/2.7/library/logging.html#logging] module

	
Experiment.critical(message)

	log critical message, see the logging [http://docs.python.org/2.7/library/logging.html#logging] module

	
Experiment.getOutputFile(section)

	return filename to write to.

	
Experiment.openOutputFile(section, mode='w')

	open file for writing substituting section in the
output_pattern (if defined).

If the filename ends with ”.gz”, the output is opened
as a gzip’ed file.

	
class Experiment.Counter

	Bases: object

a counter class.

The counter acts both as a dictionary and
a object permitting attribute access.

Counts are automatically initialized to 0.

Instantiate and use like this:

c = Counter()
c.input += 1
c.output += 2
c["skipped"] += 1

print str(c)

Store data returned by function.

	
asTable()

	return values as tab-separated table (without header).

	
Experiment.run(cmd, return_stdout=False, **kwargs)

	executed a command line cmd.

returns the return code.

If return_stdout is True, the contents of stdout
are returned.

kwargs are passed on to subprocess.call or subprocess.check_output.

raises OSError if process failed or was terminated.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

CSV.py - Tools for parsing CSV files

	Author:	Andreas Heger

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

	
CSV.ConvertDictionary(d, map={})

	tries to convert values in a dictionary.

if map contains ‘default’, a default conversion is enforced.
For example, to force int for every column but column id,
supply map = {‘default’ : “int”, “id” : “str” }

	
CSV.GetMapColumn2Type(rows, ignore_empty=False, get_max_values=False)

	map fields to types based on rows.

Preference is Int to Float to String.

If get_max_values is set to true, the maximum values for integer
columns are returned in a dictionary.

	
class CSV.CommentStripper(infile)

	iterator class for stripping comments from file.

	
class CSV.DictReader(infile, *args, **kwargs)

	Bases: csv.DictReader [http://docs.python.org/2.7/library/csv.html#csv.DictReader]

like csv.DictReader, but skip comments (lines starting with “#”).

	
class CSV.DictReaderLarge(infile, fieldnames, *args, **kwargs)

	drop-in for csv.DictReader - handles very large fields

Warning - minimal implementation - does not handle dialects

	
CSV.ReadTable(lines, as_rows=True, with_header=True, ignore_incomplete=False, dialect='excel-tab')

	read a table from infile

returns table as rows or as columns.
If remove_incomplete, incomplete rows are simply ignored.

	
CSV.ReadTables(infile, *args, **kwargs)

	read a set of csv tables.

Individual tables are separated by // on a single line.

	
CSV.GroupTable(table, group_column=0, group_function=<built-in function min>, missing_value='na')

	group table by group_column.

The table need not be sorted.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

IOTools - tools for I/O operations

	Author:	Andreas Heger

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

Code

	
IOTools.readMap(infile, columns=(0, 1), map_functions=(<type 'str'>, <type 'str'>), both_directions=False, has_header=False)

	read a map (pairs of values) from infile.
returns a hash.

Use map functions to convert elements.
If both_directions is set to true, both mapping directions are returned.

	
IOTools.readList(infile, column=0, map_function=<type 'str'>, map_category={}, with_title=False)

	read a list of values from infile.

Use map_function to convert values.
Use map_category, to map read values directory
If with_title, first line is assumed to be a title

	
IOTools.ReadList(infile, column=0, map_function=<type 'str'>, map_category={})

	read a list of values from infile.

Use map_function to convert values.
Use map_category, to map read values directory

	
IOTools.readMultiMap(infile, columns=(0, 1), map_functions=(<type 'str'>, <type 'str'>), both_directions=False, has_header=False, dtype=<type 'dict'>)

	read a map (pairs of values) from infile.
returns a hash.

Use map functions to convert elements.
If both_directions is set to true, both mapping directions are returned.
This function can have n:n matches

	
IOTools.readTable(file, separator='\t', numeric_type=<type 'float'>, take='all', headers=True, truncate=None, cumulate_out_of_range=True)

	read a table of values. There probably is a routine for this in Numpy, which
I haven’t found yet.

If cumulate_out_of_range is set to true, the terminal bins will
contain the cumulative values of bins out of range.

	
IOTools.writeTable(outfile, table, columns=None, fillvalue='')

	write a table to outfile.

If table is a dictionary, output columnwise. If columns is a list,
only output columns in columns in the specified order.

	
IOTools.readMatrix(infile, dtype=<type 'float'>)

	read a numpy matrix from infile.

return tuple of matrix, row_headers, col_headers

	
IOTools.writeMatrix(outfile, matrix, row_headers, col_headers, row_header='')

	write a numpy matrix to outfile.

row_header gives the title of the rows

	
IOTools.getInvertedDictionary(dict, make_unique=False)

	returns an inverted dictionary with keys and values swapped.

	
IOTools.readSequence(file)

	read sequence from a fasta file.

returns a tuple with description and sequence

	
IOTools.getLastLine(filename, nlines=1, read_size=1024)

	return last line of a file.

	
IOTools.getNumLines(filename, ignore_comments=True)

	get number of lines in filename.

	
IOTools.ReadMap(*args, **kwargs)

	compatibility - see readMap.

	
IOTools.isEmpty(filename)

	return True if file exists and is empty.

raises OSError if file does not exist

	
class IOTools.FilePool(output_pattern=None, header=None, force=True)

	manage a pool of output files

This class will keep a large number of files open. To
see if you can handle this, check the limit within the shell:

ulimit -n

The number of currently open and maximum open files in the system:

cat /proc/sys/fs/file-nr

Changing these limits might not be easy for a user.

This class is inefficient if the number of files is larger than
maxopen and calls to write do not group keys together.

	
close()

	close all open files.

	
getFilename(identifier)

	get filename for an identifier.

	
openFile(filename, mode='w')

	open file.

If file is in a new directory, create directories.

	
deleteFiles(min_size=0)

	delete all files below a minimum size.

	
class IOTools.FilePoolMemory(*args, **kwargs)

	Bases: IOTools.FilePool

manage a pool of output files

The data is cached in memory before writing to disk.

	
close()

	close all open files.
writes the data to disk.

	
deleteFiles(min_size=0)

	delete all files below a minimum size.

	
getFilename(identifier)

	get filename for an identifier.

	
openFile(filename, mode='w')

	open file.

If file is in a new directory, create directories.

	
IOTools.val2str(val, format='%5.2f', na='na')

	return formatted value.

If value does not fit format string, return “na”

	
IOTools.str2val(val, format='%5.2f', na='na')

	guess type of value.

	
IOTools.prettyFloat(val, format='%5.2f')

	deprecated, use val2str

	
IOTools.prettyPercent(numerator, denominator, format='%5.2f', na='na')

	output a percent value or “na” if not defined

	
IOTools.prettyString(val)

	output val or na if val == None

	
class IOTools.nested_dict

	Bases: collections.defaultdict [http://docs.python.org/2.7/library/collections.html#collections.defaultdict]

Auto-vivifying nested dictionaries.

For example:

nd= nested_dict()
nd["mouse"]["chr1"]["+"] = 311

	
iterflattened()

	iterate through values with nested keys flattened into a tuple

	
clear() None. Remove all items from D.

	

	
copy() a shallow copy of D.

	

	
default_factory

	Factory for default value called by __missing__().

	
static fromkeys(S[, v]) New dict with keys from S and values equal to v.

	v defaults to None.

	
get(k[, d]) D[k] if k in D, else d. d defaults to None.

	

	
has_key(k) True if D has a key k, else False

	

	
items() list of D's (key, value) pairs, as 2-tuples

	

	
iteritems() an iterator over the (key, value) items of D

	

	
iterkeys() an iterator over the keys of D

	

	
itervalues() an iterator over the values of D

	

	
keys() list of D's keys

	

	
pop(k[, d]) v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised

	
popitem() (k, v), remove and return some (key, value) pair as a

	2-tuple; but raise KeyError if D is empty.

	
setdefault(k[, d]) D.get(k,d), also set D[k]=d if k not in D

	

	
update([E], **F) None. Update D from dict/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]

	
values() list of D's values

	

	
viewitems() a set-like object providing a view on D's items

	

	
viewkeys() a set-like object providing a view on D's keys

	

	
viewvalues() an object providing a view on D's values

	

	
IOTools.flatten(l, ltypes=(<type 'list'>, <type 'tuple'>))

	flatten a nested list/tuple.

	
IOTools.which(program)

	check if program is in path.

from post at http://stackoverflow.com/questions/377017/test-if-executable-exists-in-python

	
IOTools.convertValue(value, list_detection=False)

	convert a value to int, float or str.

	
IOTools.iterate_tabular(infile, sep='\t')

	iterate over infile skipping comments.

	
IOTools.openFile(filename, mode='r', create_dir=False)

	open file in filename with mode mode.

If create is set, the directory containing filename
will be created if it does not exist.

gzip - compressed files are recognized by the
suffix .gz and opened transparently.

Note that there are differences in the file
like objects returned, for example in the
ability to seek.

returns a file or file-like object.

	
IOTools.iterate(infile)

	iterate over infile and return a namedtuple according to
first row.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

Iterators.py - general purpose iterators.

	Author:	Unknown

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

A collection of useful, general purpose iterators.

This code was downloaded from an unknown source.

	
Iterators.sample(iterable, sample_size=None)

	sample # copies from iterator without replacement.

Stores a temporay copy of the items in iterable. The function
has thus a possibly high memory footprint and long pre-processing
time to yield the first element.

If sample_size is not given, the iterator returns elements in
random order (see random.shuffle())

	
Iterators.group_by_distance(iterable, distance=1)

	group integers into non-overlapping intervals that
are at most distance apart.

>>> list(group_by_distance((1,1,2,4,5,7)))
[(1, 3), (4, 6), (7, 8)]

>>> list(group_by_distance([]))
[]

>>> list(group_by_distance([3]))
[(3, 4)]

>>> list(group_by_distance([3,2]))
Traceback (most recent call last):
...
ValueError: iterable is not sorted: 2 < 3

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

Database.py -

	Author:	Andreas Heger

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

Code

	
Database.executewait(dbhandle, statement, error=None, retries=-1, wait=5)

	execute an sql statement.

If error is given, it is scanned for locking issues.

Retry retries times if set to a positive number.
A retry of 0 indicates no retry, a negative number retries
infinitely.

The process waits wait seconds between each retry.

Returns a cursor object.

	
Database.getColumnNames(dbhandle, table)

	get column names of a table from a database.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

ExternalList.py - large disk-based lists

A list class that serves as a stand-in for python lists but
stores data on the file system.

Implements not all functionality of lists yet. Lists are stored
as tab-separated values for unix sort functionality, so all
elements in the list should have the same type.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

ProgressBar.py -

	Author:	Andreas Heger

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

Code

	
class ProgressBar.ProgressBar(minValue=0, maxValue=10, totalWidth=12)

	progress bar class

adapted from Randy Pargman (2002)
see http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/168639

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

PipelineTracks.py - Definition of tracks in pipelines

	Author:	Andreas Heger

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

Motivation

A pipeline typically processes the data streams from several experimental
data sources. These data streams are usually processed separately (processing,
quality control) and as aggregates. For example, consider the following
experimental layout:

	Filename
	Content

	liver-stimulated-R1
	liver, stimulated, replicate 1

	liver-stimulated-R2
	liver, stimulated, replicate 2

	liver-unstimulated-R1
	liver, unstimulated, replicate 1

	liver-unstimulated-R2
	liver, unstimulated, replicate 2

	heart-stimulated-R1
	heart, stimulated, replicate 1

	heart-stimulated-R2
	heart, stimulated, replicate 2

	heart-unstimulated-R1
	heart, unstimulated, replicate 1

	heart-unstimulated-R2
	heart, unstimulated, replicate 2

The experiment measured in two tissues with two conditions with two replicates each
giving eight data streams. During the analysis, the streams are merged in a variety
of combinations:

	unmerged for initial processing, QC, etc.

	by replicates to assess reproducibility of measurements

	by condition to assess the size of the response to the stimulus

	by tissue to assess differences between tissue and address the biological question.

The crossing of data streams complicates the building of pipelines, especially
as no two experiments are the same. The PipelineTracks module assists
in controlling these data streams. This module provides some tools to map tracks to different
representations and to group them in flexible ways in order to provide convenient short-cuts
in pipelines.

There are three class within PipelineTracks: Sample, Tracks and Aggregate.

A Track

The basic atomic data structure is a Sample or track. A track is a
single measurement that can be combined with other tracks. A track identifier consists of a tuple of
attributes. Each track in and experimental design has the same number of labels in the same order.
In the example above, there are three attributes: tissue, condition and replicate. Identifiers are thus
('liver', 'stimulated','R1') or ('heart','unstimulated','R2').

The same track can be represented by different names depending on context, for example when
it is used as a filename or a database table. As filename, the track ('heart','unstimulated','R2')
is rendered as heart-unstimulated-R2 (avoiding spaces), while as a table, it reads
heart-unstimulated-R2, avoiding -+.. The Sample class provides convenience methods to
convert names from one context to another.

Track containers

A container of type Tracks stores one or more objects of type Sample.

Aggregates

Tracks can be combined into aggregates. Aggregation is indicated by the agg keyword.

For example, the liver-stimulated-agg aggregate combines the tracks liver-stimulated-R1
and liver-stimulated-R2. The aggregate agg-stimulated-agg combines all replicates and
all tissues (liver-stimulated-R1, liver-stimulated-R2, heart-stimulated-R1,
heart-stimulated-R2)

Usage

Defining tracks and aggregates

To use tracks, you need to first define a new Sample. In the example above with the attributes
tissue, condition and replicate, the Sample could be:

import PipelineTracks

class MySample(PipelineTracks.Sample):
 attributes = ("tissue", "condition", "replicate")

Once defined, you can add tracks to a tracks container. For example:

TRACKS = PipelineTracks.Tracks(MySample).loadFromDirectory(glob.glob("*.fastq.gz"),
 pattern = "(\S+).fastq.gz")

will collect all files ending in .fastq.gz. The track identifiers will be derived by removing the fastq.gz
suffix. The variable TRACKS contains all the tracks derived from files ending in *.fastq.gz:

>>> print TRACKS
[liver-stimulated-R2, heart-stimulated-R2, liver-stimulated-R1, liver-unstimulated-R1, heart-unstimulated-R2, heart-stimulated-R1, heart-unstimulated-R1, liver-unstimulated-R2]

To build aggregates, use PipelineTracks.Aggregate. The following combines replicates for each experiment:

EXPERIMENTS = PipelineTracks.Aggregate(TRACKS, labels = ("condition", "tissue"))

Aggregates are simply containers of associated data sets. To get a list of experiments, type:

>>> EXPERIMENTS = PipelineTracks.Aggregate(TRACKS, labels = ("condition", "tissue"))
>>> print list(EXPERIMENT)
[heart-stimulated-agg, heart-unstimulated-agg, liver-stimulated-agg, liver-unstimulated-agg]

or:

>>> print EXPERIMENT.keys()
[heart-stimulated-agg, heart-unstimulated-agg, liver-stimulated-agg, liver-unstimulated-agg]

To obtain all replicates in the experiment heart-stimulated, use dictionary access:

>>> print EXPERIMENTS['heart-stimulated-agg']
[heart-stimulated-R2, heart-stimulated-R1]

The returned objects are tracks. To use a track as a tablename or as a file, use data
access functions Sample.asTable() or Sample.asFile(), respectively:

>>> print [x.asFile() for x in EXPERIMENTS['heart-stimulated-agg']]
['heart-stimulated-R2', 'heart-stimulated-R1']

>>> print [str(x) for x in EXPERIMENTS['heart-stimulated-agg']]
['heart-stimulated-R2', 'heart-stimulated-R1']

>>> print [x.asTable() for x in EXPERIMENTS['heart-stimulated-agg']]
['heart_stimulated_R2', 'heart_stimulated_R1']

Note how the - is converted to _ as the former are illegal as SQL table names.

The default representation is file-based. By using the class method:

MySample.setDefault("asTable")

the default representation can be changed for all tracks simultaneously.

You can have multiple aggregates. For example, some tasks might require all conditions or all
tissues:

CONDITIONS = PipelineTracks.Aggregate(TRACKS, labels = ("condition",))
TISSUES = PipelineTracks.Aggregate(TRACKS, labels = ("tissue",))

You can have several Tracks within a directory. Tracks are simply
containers and as such do not have any actions associated with them.

Using tracks in pipelines

Unfortunately, tracks and aggregates do not work yet directly as ruffus [http://www.ruffus.org.uk/]
task lists. Instead, they need to be converted to files explicitely using
list comprehensions.

If you wanted to process all tracks separately, use:

@files([("%s.fastq.gz" % x.asFile(),
 "%s.qc" % x.asFile()) for x in TRACKS])
def performQC(infile, outfile):

The above statement will create the following list of input/output files for the performQC task:

[("liver-stimulated-R1.fastq.gz", "liver-stimulated-R1.qc")
 ("liver-stimulated-R2.fastq.gz" , "liver-stimulated-R2.qc"),
 ...
]

Using aggregates works similarly, though you will need to create the file
lists yourself using nested list comprehensions. The following creates
an analysis per experimemnt:

@files([((["%s.fastq.gz" % y.asFile() for y in EXPERIMENTS[x]]),
 "%s.out" % x.asFile())
 for x in EXPERIMENTS])
def checkReproducibility(infiles, outfile):

The above statement will create the following list of input/output files:

[(("liver-stimulated-R1.fastq.gz", "liver-stimulated-R2.fastq.gz"), "liver-stimulated-agg.out"),
 (("liver-unstimulated-R1.fastq.gz", "liver-unstimulated-R2.fastq.gz"), "liver-unstimulated-agg.out"),
 (("heart-stimulated-R1.fastq.gz", "heart-stimulated-R2.fastq.gz"), "heart-stimulated-agg.out"),
 (("heart-unstimulated-R1.fastq.gz", "heart-unstimulated-R2.fastq.gz"), "heart-unstimulated-agg.out"),
]

The above code makes sure that the file dependencies are observed. Thus, if heart-stimulated-R1.fastq.gz
changes, only heart-stimulated-agg.out will be re-computed.

Tracks and aggregates can be used within a task. The following code will collect all replicates for
the experiment liver-stimulated-agg

>>> track = TRACKS.factory(filename = "liver-stimulated-agg")
>>> replicates = PipelineTracks.getSamplesInTrack(track, TRACKS)
>>> print replicates
[liver-stimulated-R2, liver-stimulated-R1]

API

	
class PipelineTracks.Sample(filename=None)

	Bases: object

a sample/track with one attribute called experiment.

create a new Sample.

If filename is given, the sample name will be derived from filename.

	
clone()

	return a copy of self.

	
asFile()

	return sample as a filename

	
asTable()

	return sample as a tablename

	
asR()

	return sample as valid R label

	
fromFile(fn)

	build sample from filename fn

	
fromTable(tn)

	build sample from tablename tn

	
fromR(rn)

	build sample from R name rn

	
asAggregate(*args)

	return a new aggregate Sample.

	
toLabels()

	return attributes that this track is an aggregate of.

	
classmethod setDefault(representation=None)

	set default representation for tracks to representation.
If represenation is None, the representation will be set to
the library default (asFile()).

	
class PipelineTracks.Sample3(filename=None)

	Bases: PipelineTracks.Sample

a sample/track with three attributes: tissue, condition and replicate.

create a new Sample.

If filename is given, the sample name will be derived from filename.

	
asAggregate(*args)

	return a new aggregate Sample.

	
asFile()

	return sample as a filename

	
asR()

	return sample as valid R label

	
asTable()

	return sample as a tablename

	
clone()

	return a copy of self.

	
fromFile(fn)

	build sample from filename fn

	
fromR(rn)

	build sample from R name rn

	
fromTable(tn)

	build sample from tablename tn

	
classmethod setDefault(representation=None)

	set default representation for tracks to representation.
If represenation is None, the representation will be set to
the library default (asFile()).

	
toLabels()

	return attributes that this track is an aggregate of.

	
class PipelineTracks.Tracks(factory=<class 'PipelineTracks.Sample'>)

	a collection of tracks.

create a new container.

New tracks are derived using factory.

	
factory

	alias of Sample

	
loadFromDirectory(files, pattern, exclude=None)

	load tracks from a list of files, applying pattern.

Pattern is a regular expression with at at least one
group, for example (.*).gz.

If set, exclude files matching regular expression in exclude.

	
getTracks(pattern=None)

	return all tracks in container.

	
PipelineTracks.getSamplesInTrack(track, tracks)

	return all tracks in tracks that constitute track.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

PipelineTracks.py - Definition of tracks in pipelines

	Author:	Andreas Heger

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

Motivation

A pipeline typically processes the data streams from several experimental
data sources. These data streams are usually processed separately (processing,
quality control) and as aggregates. For example, consider the following
experimental layout:

	Filename
	Content

	liver-stimulated-R1
	liver, stimulated, replicate 1

	liver-stimulated-R2
	liver, stimulated, replicate 2

	liver-unstimulated-R1
	liver, unstimulated, replicate 1

	liver-unstimulated-R2
	liver, unstimulated, replicate 2

	heart-stimulated-R1
	heart, stimulated, replicate 1

	heart-stimulated-R2
	heart, stimulated, replicate 2

	heart-unstimulated-R1
	heart, unstimulated, replicate 1

	heart-unstimulated-R2
	heart, unstimulated, replicate 2

The experiment measured in two tissues with two conditions with two replicates each
giving eight data streams. During the analysis, the streams are merged in a variety
of combinations:

	unmerged for initial processing, QC, etc.

	by replicates to assess reproducibility of measurements

	by condition to assess the size of the response to the stimulus

	by tissue to assess differences between tissue and address the biological question.

The crossing of data streams complicates the building of pipelines, especially
as no two experiments are the same. The PipelineTracks module assists
in controlling these data streams. This module provides some tools to map tracks to different
representations and to group them in flexible ways in order to provide convenient short-cuts
in pipelines.

There are three class within PipelineTracks: Sample, Tracks and Aggregate.

A Track

The basic atomic data structure is a Sample or track. A track is a
single measurement that can be combined with other tracks. A track identifier consists of a tuple of
attributes. Each track in and experimental design has the same number of labels in the same order.
In the example above, there are three attributes: tissue, condition and replicate. Identifiers are thus
('liver', 'stimulated','R1') or ('heart','unstimulated','R2').

The same track can be represented by different names depending on context, for example when
it is used as a filename or a database table. As filename, the track ('heart','unstimulated','R2')
is rendered as heart-unstimulated-R2 (avoiding spaces), while as a table, it reads
heart-unstimulated-R2, avoiding -+.. The Sample class provides convenience methods to
convert names from one context to another.

Track containers

A container of type Tracks stores one or more objects of type Sample.

Aggregates

Tracks can be combined into aggregates. Aggregation is indicated by the agg keyword.

For example, the liver-stimulated-agg aggregate combines the tracks liver-stimulated-R1
and liver-stimulated-R2. The aggregate agg-stimulated-agg combines all replicates and
all tissues (liver-stimulated-R1, liver-stimulated-R2, heart-stimulated-R1,
heart-stimulated-R2)

Usage

Defining tracks and aggregates

To use tracks, you need to first define a new Sample. In the example above with the attributes
tissue, condition and replicate, the Sample could be:

import PipelineTracks

class MySample(PipelineTracks.Sample):
 attributes = ("tissue", "condition", "replicate")

Once defined, you can add tracks to a tracks container. For example:

TRACKS = PipelineTracks.Tracks(MySample).loadFromDirectory(glob.glob("*.fastq.gz"),
 pattern = "(\S+).fastq.gz")

will collect all files ending in .fastq.gz. The track identifiers will be derived by removing the fastq.gz
suffix. The variable TRACKS contains all the tracks derived from files ending in *.fastq.gz:

>>> print TRACKS
[liver-stimulated-R2, heart-stimulated-R2, liver-stimulated-R1, liver-unstimulated-R1, heart-unstimulated-R2, heart-stimulated-R1, heart-unstimulated-R1, liver-unstimulated-R2]

To build aggregates, use PipelineTracks.Aggregate. The following combines replicates for each experiment:

EXPERIMENTS = PipelineTracks.Aggregate(TRACKS, labels = ("condition", "tissue"))

Aggregates are simply containers of associated data sets. To get a list of experiments, type:

>>> EXPERIMENTS = PipelineTracks.Aggregate(TRACKS, labels = ("condition", "tissue"))
>>> print list(EXPERIMENT)
[heart-stimulated-agg, heart-unstimulated-agg, liver-stimulated-agg, liver-unstimulated-agg]

or:

>>> print EXPERIMENT.keys()
[heart-stimulated-agg, heart-unstimulated-agg, liver-stimulated-agg, liver-unstimulated-agg]

To obtain all replicates in the experiment heart-stimulated, use dictionary access:

>>> print EXPERIMENTS['heart-stimulated-agg']
[heart-stimulated-R2, heart-stimulated-R1]

The returned objects are tracks. To use a track as a tablename or as a file, use data
access functions Sample.asTable() or Sample.asFile(), respectively:

>>> print [x.asFile() for x in EXPERIMENTS['heart-stimulated-agg']]
['heart-stimulated-R2', 'heart-stimulated-R1']

>>> print [str(x) for x in EXPERIMENTS['heart-stimulated-agg']]
['heart-stimulated-R2', 'heart-stimulated-R1']

>>> print [x.asTable() for x in EXPERIMENTS['heart-stimulated-agg']]
['heart_stimulated_R2', 'heart_stimulated_R1']

Note how the - is converted to _ as the former are illegal as SQL table names.

The default representation is file-based. By using the class method:

MySample.setDefault("asTable")

the default representation can be changed for all tracks simultaneously.

You can have multiple aggregates. For example, some tasks might require all conditions or all
tissues:

CONDITIONS = PipelineTracks.Aggregate(TRACKS, labels = ("condition",))
TISSUES = PipelineTracks.Aggregate(TRACKS, labels = ("tissue",))

You can have several Tracks within a directory. Tracks are simply
containers and as such do not have any actions associated with them.

Using tracks in pipelines

Unfortunately, tracks and aggregates do not work yet directly as ruffus [http://www.ruffus.org.uk/]
task lists. Instead, they need to be converted to files explicitely using
list comprehensions.

If you wanted to process all tracks separately, use:

@files([("%s.fastq.gz" % x.asFile(),
 "%s.qc" % x.asFile()) for x in TRACKS])
def performQC(infile, outfile):

The above statement will create the following list of input/output files for the performQC task:

[("liver-stimulated-R1.fastq.gz", "liver-stimulated-R1.qc")
 ("liver-stimulated-R2.fastq.gz" , "liver-stimulated-R2.qc"),
 ...
]

Using aggregates works similarly, though you will need to create the file
lists yourself using nested list comprehensions. The following creates
an analysis per experimemnt:

@files([((["%s.fastq.gz" % y.asFile() for y in EXPERIMENTS[x]]),
 "%s.out" % x.asFile())
 for x in EXPERIMENTS])
def checkReproducibility(infiles, outfile):

The above statement will create the following list of input/output files:

[(("liver-stimulated-R1.fastq.gz", "liver-stimulated-R2.fastq.gz"), "liver-stimulated-agg.out"),
 (("liver-unstimulated-R1.fastq.gz", "liver-unstimulated-R2.fastq.gz"), "liver-unstimulated-agg.out"),
 (("heart-stimulated-R1.fastq.gz", "heart-stimulated-R2.fastq.gz"), "heart-stimulated-agg.out"),
 (("heart-unstimulated-R1.fastq.gz", "heart-unstimulated-R2.fastq.gz"), "heart-unstimulated-agg.out"),
]

The above code makes sure that the file dependencies are observed. Thus, if heart-stimulated-R1.fastq.gz
changes, only heart-stimulated-agg.out will be re-computed.

Tracks and aggregates can be used within a task. The following code will collect all replicates for
the experiment liver-stimulated-agg

>>> track = TRACKS.factory(filename = "liver-stimulated-agg")
>>> replicates = PipelineTracks.getSamplesInTrack(track, TRACKS)
>>> print replicates
[liver-stimulated-R2, liver-stimulated-R1]

API

	
class PipelineTracks.Sample(filename=None)

	Bases: object

a sample/track with one attribute called experiment.

create a new Sample.

If filename is given, the sample name will be derived from filename.

	
clone()

	return a copy of self.

	
asFile()

	return sample as a filename

	
asTable()

	return sample as a tablename

	
asR()

	return sample as valid R label

	
fromFile(fn)

	build sample from filename fn

	
fromTable(tn)

	build sample from tablename tn

	
fromR(rn)

	build sample from R name rn

	
asAggregate(*args)

	return a new aggregate Sample.

	
toLabels()

	return attributes that this track is an aggregate of.

	
classmethod setDefault(representation=None)

	set default representation for tracks to representation.
If represenation is None, the representation will be set to
the library default (asFile()).

	
class PipelineTracks.Sample3(filename=None)

	Bases: PipelineTracks.Sample

a sample/track with three attributes: tissue, condition and replicate.

create a new Sample.

If filename is given, the sample name will be derived from filename.

	
asAggregate(*args)

	return a new aggregate Sample.

	
asFile()

	return sample as a filename

	
asR()

	return sample as valid R label

	
asTable()

	return sample as a tablename

	
clone()

	return a copy of self.

	
fromFile(fn)

	build sample from filename fn

	
fromR(rn)

	build sample from R name rn

	
fromTable(tn)

	build sample from tablename tn

	
classmethod setDefault(representation=None)

	set default representation for tracks to representation.
If represenation is None, the representation will be set to
the library default (asFile()).

	
toLabels()

	return attributes that this track is an aggregate of.

	
class PipelineTracks.Tracks(factory=<class 'PipelineTracks.Sample'>)

	a collection of tracks.

create a new container.

New tracks are derived using factory.

	
factory

	alias of Sample

	
loadFromDirectory(files, pattern, exclude=None)

	load tracks from a list of files, applying pattern.

Pattern is a regular expression with at at least one
group, for example (.*).gz.

If set, exclude files matching regular expression in exclude.

	
getTracks(pattern=None)

	return all tracks in container.

	
PipelineTracks.getSamplesInTrack(track, tracks)

	return all tracks in tracks that constitute track.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

RLE.py - a simple run length encoder

	Author:	

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

Taken from: http://rosettacode.org/wiki/Run-length_encoding#Python

	
RLE.encode(input_array)

	encode array or string.

return tuples of (count, value).

>>> encode(array.array("i", (10,10,10,10,20,20,20,20)))
[(4, 10), (4, 20)]

>>> encode("aaaaahhhhhhmmmmmmmuiiiiiiiaaaaaa")
[(5, 'a'), (6, 'h'), (7, 'm'), (1, 'u'), (7, 'i'), (6, 'a')]

	
RLE.decode(lst, typecode)

	decode to array

>>> decode([(4, 10), (4, 20)], typecode="i")
array('i', [10, 10, 10, 10, 20, 20, 20, 20])

>>> decode([(5, 'a'), (6, 'h'), (7, 'm'), (1, 'u'), (7, 'i'), (6, 'a')], typecode="c")
array('c', 'aaaaahhhhhhmmmmmmmuiiiiiiiaaaaaa')

	
RLE.compress(input_string, bytes=1)

	return compressed stream.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

SVGdraw.py - generate SVG drawings

	Author:	Fedor Baart & Hans de Wit

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

This module has been copied from 3rd party resources.

SVGdraw uses an object model drawing and a method toXML to create SVG graphics
by using easy to use classes and methods usualy you start by creating a drawing eg

d=drawing()
#then you create a SVG root element
s=svg()
#then you add some elements eg a circle and add it to the svg root element
c=circle()
#you can supply attributes by using named arguments.
c=circle(fill=’red’,stroke=’blue’)
#or by updating the attributes attribute:
c.attributes[‘stroke-width’]=1
s.addElement(c)
#then you add the svg root element to the drawing
d.setSVG(s)
#and finaly you xmlify the drawing
d.toXml()

this results in the svg source of the drawing, which consists of a circle
on a white background. Its as easy as that;)
This module was created using the SVG specification of www.w3c.org and the
O’Reilly (www.oreilly.com) python books as information sources. A svg viewer
is available from www.adobe.com

	
class SVGdraw.pathdata(x=None, y=None)

	class used to create a pathdata object which can be used for a path.
although most methods are pretty straightforward it might be useful to look at the SVG specification.

	
closepath()

	ends the path

	
move(x, y)

	move to absolute

	
relmove(x, y)

	move to relative

	
line(x, y)

	line to absolute

	
relline(x, y)

	line to relative

	
hline(x)

	horizontal line to absolute

	
relhline(x)

	horizontal line to relative

	
vline(y)

	verical line to absolute

	
relvline(y)

	vertical line to relative

	
bezier(x1, y1, x2, y2, x, y)

	bezier with xy1 and xy2 to xy absolut

	
relbezier(x1, y1, x2, y2, x, y)

	bezier with xy1 and xy2 to xy relative

	
smbezier(x2, y2, x, y)

	smooth bezier with xy2 to xy absolut

	
relsmbezier(x2, y2, x, y)

	smooth bezier with xy2 to xy relative

	
qbezier(x1, y1, x, y)

	quadratic bezier with xy1 to xy absolut

	
relqbezier(x1, y1, x, y)

	quadratic bezier with xy1 to xy relative

	
smqbezier(x, y)

	smooth quadratic bezier to xy absolut

	
relsmqbezier(x, y)

	smooth quadratic bezier to xy relative

	
ellarc(rx, ry, xrot, laf, sf, x, y)

	elliptival arc with rx and ry rotating with xrot using large-arc-flag and sweep-flag to xy absolut

	
relellarc(rx, ry, xrot, laf, sf, x, y)

	elliptival arc with rx and ry rotating with xrot using large-arc-flag and sweep-flag to xy relative

	
class SVGdraw.SVGelement(type='', attributes=None, elements=None, text='', namespace='', cdata=None, **args)

	SVGelement(type,attributes,elements,text,namespace,**args)
Creates a arbitrary svg element and is intended to be subclassed not used on its own.
This element is the base of every svg element it defines a class which resembles
a xml-element. The main advantage of this kind of implementation is that you don’t
have to create a toXML method for every different graph object. Every element
consists of a type, attribute, optional subelements, optional text and an optional
namespace. Note the elements==None, if elements = None:self.elements=[] construction.
This is done because if you default to elements=[] every object has a reference
to the same empty list.

	
addElement(SVGelement)

	adds an element to a SVGelement

SVGelement.addElement(SVGelement)

	
class SVGdraw.tspan(text=None, **args)

	Bases: SVGdraw.SVGelement

ts=tspan(text=’‘,**args)

a tspan element can be used for applying formatting to a textsection
usage:
ts=tspan(‘this text is bold’)
ts.attributes[‘font-weight’]=’bold’
st=spannedtext()
st.addtspan(ts)
t=text(3,5,st)

	
addElement(SVGelement)

	adds an element to a SVGelement

SVGelement.addElement(SVGelement)

	
class SVGdraw.tref(link, **args)

	Bases: SVGdraw.SVGelement

tr=tref(link=’‘,**args)

a tref element can be used for referencing text by a link to its id.
usage:
tr=tref(‘#linktotext’)
st=spannedtext()
st.addtref(tr)
t=text(3,5,st)

	
addElement(SVGelement)

	adds an element to a SVGelement

SVGelement.addElement(SVGelement)

	
class SVGdraw.spannedtext(textlist=None)

	st=spannedtext(textlist=[])

a spannedtext can be used for text which consists of text, tspan’s and tref’s
You can use it to add to a text element or path element. Don’t add it directly
to a svg or a group element.
usage:

ts=tspan(‘this text is bold’)
ts.attributes[‘font-weight’]=’bold’
tr=tref(‘#linktotext’)
tr.attributes[‘fill’]=’red’
st=spannedtext()
st.addtspan(ts)
st.addtref(tr)
st.addtext(‘This text is not bold’)
t=text(3,5,st)

	
class SVGdraw.rect(x=None, y=None, width=None, height=None, fill=None, stroke=None, stroke_width=None, **args)

	Bases: SVGdraw.SVGelement

r=rect(width,height,x,y,fill,stroke,stroke_width,**args)

a rectangle is defined by a width and height and a xy pair

	
addElement(SVGelement)

	adds an element to a SVGelement

SVGelement.addElement(SVGelement)

	
class SVGdraw.ellipse(cx=None, cy=None, rx=None, ry=None, fill=None, stroke=None, stroke_width=None, **args)

	Bases: SVGdraw.SVGelement

e=ellipse(rx,ry,x,y,fill,stroke,stroke_width,**args)

an ellipse is defined as a center and a x and y radius.

	
addElement(SVGelement)

	adds an element to a SVGelement

SVGelement.addElement(SVGelement)

	
class SVGdraw.circle(cx=None, cy=None, r=None, fill=None, stroke=None, stroke_width=None, **args)

	Bases: SVGdraw.SVGelement

c=circle(x,y,radius,fill,stroke,stroke_width,**args)

The circle creates an element using a x, y and radius values eg

	
addElement(SVGelement)

	adds an element to a SVGelement

SVGelement.addElement(SVGelement)

	
class SVGdraw.point(x, y, fill='black', **args)

	Bases: SVGdraw.circle

p=point(x,y,color)

A point is defined as a circle with a size 1 radius. It may be more efficient to use a
very small rectangle if you use many points because a circle is difficult to render.

	
addElement(SVGelement)

	adds an element to a SVGelement

SVGelement.addElement(SVGelement)

	
class SVGdraw.line(x1=None, y1=None, x2=None, y2=None, stroke=None, stroke_width=None, **args)

	Bases: SVGdraw.SVGelement

l=line(x1,y1,x2,y2,stroke,stroke_width,**args)

A line is defined by a begin x,y pair and an end x,y pair

	
addElement(SVGelement)

	adds an element to a SVGelement

SVGelement.addElement(SVGelement)

	
class SVGdraw.polyline(points, fill=None, stroke=None, stroke_width=None, **args)

	Bases: SVGdraw.SVGelement

pl=polyline([[x1,y1],[x2,y2],...],fill,stroke,stroke_width,**args)

a polyline is defined by a list of xy pairs

	
addElement(SVGelement)

	adds an element to a SVGelement

SVGelement.addElement(SVGelement)

	
class SVGdraw.polygon(points, fill=None, stroke=None, stroke_width=None, **args)

	Bases: SVGdraw.SVGelement

pl=polyline([[x1,y1],[x2,y2],...],fill,stroke,stroke_width,**args)

a polygon is defined by a list of xy pairs

	
addElement(SVGelement)

	adds an element to a SVGelement

SVGelement.addElement(SVGelement)

	
class SVGdraw.path(pathdata, fill=None, stroke=None, stroke_width=None, id=None, **args)

	Bases: SVGdraw.SVGelement

p=path(path,fill,stroke,stroke_width,**args)

a path is defined by a path object and optional width, stroke and fillcolor

	
addElement(SVGelement)

	adds an element to a SVGelement

SVGelement.addElement(SVGelement)

	
class SVGdraw.text(x=None, y=None, text=None, font_size=None, font_family=None, text_anchor=None, font_style=None, **args)

	Bases: SVGdraw.SVGelement

t=text(x,y,text,font_size,font_family,**args)

a text element can bge used for displaying text on the screen

	
addElement(SVGelement)

	adds an element to a SVGelement

SVGelement.addElement(SVGelement)

	
class SVGdraw.textpath(link, text=None, **args)

	Bases: SVGdraw.SVGelement

tp=textpath(text,link,**args)

a textpath places a text on a path which is referenced by a link.

	
addElement(SVGelement)

	adds an element to a SVGelement

SVGelement.addElement(SVGelement)

	
class SVGdraw.pattern(x=None, y=None, width=None, height=None, patternUnits=None, **args)

	Bases: SVGdraw.SVGelement

p=pattern(x,y,width,height,patternUnits,**args)

A pattern is used to fill or stroke an object using a pre-defined
graphic object which can be replicated (“tiled”) at fixed intervals
in x and y to cover the areas to be painted.

	
addElement(SVGelement)

	adds an element to a SVGelement

SVGelement.addElement(SVGelement)

	
class SVGdraw.title(text=None, **args)

	Bases: SVGdraw.SVGelement

t=title(text,**args)

a title is a text element. The text is displayed in the title bar
add at least one to the root svg element

	
addElement(SVGelement)

	adds an element to a SVGelement

SVGelement.addElement(SVGelement)

	
class SVGdraw.description(text=None, **args)

	Bases: SVGdraw.SVGelement

d=description(text,**args)

a description can be added to any element and is used for a tooltip
Add this element before adding other elements.

	
addElement(SVGelement)

	adds an element to a SVGelement

SVGelement.addElement(SVGelement)

	
class SVGdraw.lineargradient(x1=None, y1=None, x2=None, y2=None, id=None, **args)

	Bases: SVGdraw.SVGelement

lg=lineargradient(x1,y1,x2,y2,id,**args)

defines a lineargradient using two xy pairs.
stop elements van be added to define the gradient colors.

	
addElement(SVGelement)

	adds an element to a SVGelement

SVGelement.addElement(SVGelement)

	
class SVGdraw.radialgradient(cx=None, cy=None, r=None, fx=None, fy=None, id=None, **args)

	Bases: SVGdraw.SVGelement

rg=radialgradient(cx,cy,r,fx,fy,id,**args)

defines a radial gradient using a outer circle which are defined by a cx,cy and r and by using a focalpoint.
stop elements van be added to define the gradient colors.

	
addElement(SVGelement)

	adds an element to a SVGelement

SVGelement.addElement(SVGelement)

	
class SVGdraw.stop(offset, stop_color=None, **args)

	Bases: SVGdraw.SVGelement

st=stop(offset,stop_color,**args)

Puts a stop color at the specified radius

	
addElement(SVGelement)

	adds an element to a SVGelement

SVGelement.addElement(SVGelement)

	
class SVGdraw.style(type, cdata=None, **args)

	Bases: SVGdraw.SVGelement

st=style(type,cdata=None,**args)

Add a CDATA element to this element for defing in line stylesheets etc..

	
addElement(SVGelement)

	adds an element to a SVGelement

SVGelement.addElement(SVGelement)

	
class SVGdraw.image(url, x=None, y=None, width=None, height=None, **args)

	Bases: SVGdraw.SVGelement

im=image(url,width,height,x,y,**args)

adds an image to the drawing. Supported formats are .png, .jpg and .svg.

	
addElement(SVGelement)

	adds an element to a SVGelement

SVGelement.addElement(SVGelement)

	
class SVGdraw.cursor(url, **args)

	Bases: SVGdraw.SVGelement

c=cursor(url,**args)

defines a custom cursor for a element or a drawing

	
addElement(SVGelement)

	adds an element to a SVGelement

SVGelement.addElement(SVGelement)

	
class SVGdraw.marker(id=None, viewBox=None, refx=None, refy=None, markerWidth=None, markerHeight=None, **args)

	Bases: SVGdraw.SVGelement

m=marker(id,viewbox,refX,refY,markerWidth,markerHeight,**args)

defines a marker which can be used as an endpoint for a line or other pathtypes
add an element to it which should be used as a marker.

	
addElement(SVGelement)

	adds an element to a SVGelement

SVGelement.addElement(SVGelement)

	
class SVGdraw.group(id=None, **args)

	Bases: SVGdraw.SVGelement

g=group(id,**args)

a group is defined by an id and is used to contain elements
g.addElement(SVGelement)

	
addElement(SVGelement)

	adds an element to a SVGelement

SVGelement.addElement(SVGelement)

	
class SVGdraw.symbol(id=None, viewBox=None, **args)

	Bases: SVGdraw.SVGelement

sy=symbol(id,viewbox,**args)

defines a symbol which can be used on different places in your graph using
the use element. A symbol is not rendered but you can use ‘use’ elements to
display it by referencing its id.
sy.addElement(SVGelement)

	
addElement(SVGelement)

	adds an element to a SVGelement

SVGelement.addElement(SVGelement)

	
class SVGdraw.defs(**args)

	Bases: SVGdraw.SVGelement

d=defs(**args)

container for defining elements

	
addElement(SVGelement)

	adds an element to a SVGelement

SVGelement.addElement(SVGelement)

	
class SVGdraw.switch(**args)

	Bases: SVGdraw.SVGelement

sw=switch(**args)

Elements added to a switch element which are “switched” by the attributes
requiredFeatures, requiredExtensions and systemLanguage.
Refer to the SVG specification for details.

	
addElement(SVGelement)

	adds an element to a SVGelement

SVGelement.addElement(SVGelement)

	
class SVGdraw.use(link, x=None, y=None, width=None, height=None, **args)

	Bases: SVGdraw.SVGelement

u=use(link,x,y,width,height,``**args``)

references a symbol by linking to its id and its position, height and width

	
addElement(SVGelement)

	adds an element to a SVGelement

SVGelement.addElement(SVGelement)

	
class SVGdraw.link(link='', **args)

	Bases: SVGdraw.SVGelement

a=link(url,``**args``)

a link is defined by a hyperlink. add elements which have to be linked
a.addElement(SVGelement)

	
addElement(SVGelement)

	adds an element to a SVGelement

SVGelement.addElement(SVGelement)

	
class SVGdraw.view(id=None, **args)

	Bases: SVGdraw.SVGelement

v=view(id,``**args``)

a view can be used to create a view with different attributes

	
addElement(SVGelement)

	adds an element to a SVGelement

SVGelement.addElement(SVGelement)

	
class SVGdraw.script(type, cdata=None, **args)

	Bases: SVGdraw.SVGelement

sc=script(type,type,cdata,``**args``)

adds a script element which contains CDATA to the SVG drawing

	
addElement(SVGelement)

	adds an element to a SVGelement

SVGelement.addElement(SVGelement)

	
class SVGdraw.animate(attribute, fr=None, to=None, dur=None, **args)

	Bases: SVGdraw.SVGelement

an=animate(attribute,from,to,during,``**args``)

animates an attribute.

	
addElement(SVGelement)

	adds an element to a SVGelement

SVGelement.addElement(SVGelement)

	
class SVGdraw.animateMotion(pathdata, dur, **args)

	Bases: SVGdraw.SVGelement

an=animateMotion(pathdata,dur,``**args``)

animates a SVGelement over the given path in dur seconds

	
addElement(SVGelement)

	adds an element to a SVGelement

SVGelement.addElement(SVGelement)

	
class SVGdraw.animateTransform(type=None, fr=None, to=None, dur=None, **args)

	Bases: SVGdraw.SVGelement

antr=animateTransform(type,from,to,dur,``**args``)

transform an element from and to a value.

	
addElement(SVGelement)

	adds an element to a SVGelement

SVGelement.addElement(SVGelement)

	
class SVGdraw.animateColor(attribute, type=None, fr=None, to=None, dur=None, **args)

	Bases: SVGdraw.SVGelement

ac=animateColor(attribute,type,from,to,dur,``**args``)

Animates the color of a element

	
addElement(SVGelement)

	adds an element to a SVGelement

SVGelement.addElement(SVGelement)

	
class SVGdraw.set(attribute, to=None, dur=None, **args)

	Bases: SVGdraw.SVGelement

st=set(attribute,to,during,``**args``)

sets an attribute to a value for a

	
addElement(SVGelement)

	adds an element to a SVGelement

SVGelement.addElement(SVGelement)

	
class SVGdraw.svg(viewBox=None, width=None, height=None, **args)

	Bases: SVGdraw.SVGelement

s=svg(viewbox,width,height,``**args``)

a svg or element is the root of a drawing add all elements to a svg element.
You can have different svg elements in one svg file
s.addElement(SVGelement)

eg
d=drawing()
s=svg((0,0,100,100),‘100%’,‘100%’)
c=circle(50,50,20)
s.addElement(c)
d.setSVG(s)
d.toXml()

	
addElement(SVGelement)

	adds an element to a SVGelement

SVGelement.addElement(SVGelement)

	
class SVGdraw.drawing

	d=drawing()

this is the actual SVG document. It needs a svg element as a root.
Use the addSVG method to set the svg to the root. Use the toXml method to write the SVG
source to the screen or to a file
d=drawing()
d.addSVG(svg)
d.toXml(optionalfilename)

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

SetTools.py - Tools for working on sets

	Author:	Andreas Heger

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

Many of the functions in this module precede the set [http://docs.python.org/2.7/library/stdtypes.html#set] datatype
in python.

Code

	
SetTools.combinations(list_of_sets)

	create all combinations of a list of sets

returns a list of tuples (set_composition, union, intersection)

	
SetTools.writeSets(outfile, list_of_sets, labels=None)

	output a list of sets as a tab-separated file.

labels is a list of set labels.

	
SetTools.unionIntersectionMatrix(list_of_sets)

	build union and intersection of a list of sets.

return a matrix with the upper diagonal the union and the lower diagonal the intersection.

	
SetTools.CompareSets(set1, set2)

	returns the union and the disjoint members of two sets. The sets have
to be sorted.

	
SetTools.MakeListComprehensionFunction(name, nsets)

	Returns a function applicable to exactly <nsets> sets.
The returned function has the signature
F(set0, set1, ..., set<nsets>)
and returns a list of all element combinations as tuples.
A set may be any iterable object.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

Sockets.py - working with sockets

This class allows you to send variable length strings
over a socket. As I am new at this, it is probably not
efficient and 100% fault tolerant.

Look at the end of the file for example usage.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

GraphTools.py -

	Author:	Andreas Heger

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

Code

	
exception GraphTools.Error

	Bases: exceptions.Exception

Base class for exceptions in this module.

	
exception GraphTools.InputError(message)

	Bases: GraphTools.Error

Exception raised for errors in the input.

	Attributes:

	expression – input expression in which the error occurred
message – explanation of the error

	
exception GraphTools.RuntimeError(message)

	Bases: GraphTools.Error

Exception raised for errors in the input.

	Attributes:

	expression – input expression in which the error occurred
message – explanation of the error

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

Cluster.py - module for running a job in parallel on the cluster

	
exception Cluster.Error

	Bases: exceptions.Exception

Base class for exceptions in this module.

	
exception Cluster.ClusterError(message)

	Bases: Cluster.Error

Exception raised for errors in the input.

	Attributes:

	expression – input expression in which the error occurred
message – explanation of the error

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

Intervalls.py -

	Author:	Andreas Heger

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

Code

	
Intervalls.CombineIntervallsLarge(intervalls)

	combine intervalls. Overlapping intervalls
are concatenated into larger intervalls.

	
Intervalls.ComplementIntervalls(intervalls, first=None, last=None)

	complement a list of intervalls with intervalls not
in list.

	
Intervalls.AddComplementIntervalls(intervalls, first=None, last=None)

	complement a list of intervalls with intervalls not
in list and return both.

	
Intervalls.CombineIntervallsDistance(intervalls, min_distance)

	combine a list of non-overlapping intervalls,
and merge those that are less than a certain
distance apart.

	
Intervalls.DeleteSmallIntervalls(intervalls, min_length)

	combine a list of non-overlapping intervalls,
and delete those that are too small.

	
Intervalls.CombineIntervallsOverlap(intervalls)

	combine intervalls.
Overlapping intervalls are reduced to their intersection.

first_from, last_to contain region of current maximum overlapping segment.
max_right is maximum extension of any sequence overlapping with current
overlapping segment.

	
Intervalls.RemoveIntervallsContained(intervalls)

	remove intervalls that are fully contained in another.

[(10, 100), (20, 50), (70, 120), (130, 200), (10, 50), (140, 210), (150, 200)]

results:

[(10, 100), (70, 120), (130, 200), (140, 210)]

	
Intervalls.RemoveIntervallsSpanning(intervalls)

	remove intervalls that are full covering
another, i.e. always keep the smallest.

[(10, 100), (20, 50), (70, 120), (40,80), (130, 200), (10, 50), (140, 210), (150, 200)]

result:

[(20, 50), (40, 80), (70, 120), (150, 200)]

	
Intervalls.ShortenIntervallsOverlap(intervalls, to_remove)

	shorten intervalls, so that there is no
overlap with another set of intervalls.

assumption: intervalls are not overlapping

	
Intervalls.CalculateOverlap(intervalls1, intervalls2)

	calculate overlap between intervalls.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

IntervallsWeigted.py - working with weigted intervals

Work with weighted invervalls. A weighted intervall is
a tuple of the form (from,to,weight).

Funktions in this module take an optional function parameter object fct,
that will give the weight if two intervalls are combined. The default
is to add the weights of intervalls that are combined.

This module is work in progress. Finished are:

CombineIntervallsLarge
RemoveIntervallsSpanning

	
IntervallsWeighted.CombineIntervallsLarge(intervalls, fct=<function <lambda> at 0x4e55a28>)

	combine intervalls. Overlapping intervalls
are concatenated into larger intervalls.

	
IntervallsWeighted.ComplementIntervalls(intervalls, first=None, last=None)

	complement a list of intervalls with intervalls not
in list.

	
IntervallsWeighted.AddComplementIntervalls(intervalls, first=None, last=None)

	complement a list of intervalls with intervalls not
in list and return both.

	
IntervallsWeighted.CombineIntervallsDistance(intervalls, min_distance)

	combine a list of non-overlapping intervalls,
and merge those that are less than a certain
distance apart.

	
IntervallsWeighted.DeleteSmallIntervalls(intervalls, min_length)

	combine a list of non-overlapping intervalls,
and delete those that are too small.

	
IntervallsWeighted.CombineIntervallsOverlap(intervalls)

	combine intervalls.
Overlapping intervalls are reduced to their intersection.

first_from, last_to contain region of current maximum overlapping segment.
max_right is maximum extension of any sequence overlapping with current
overlapping segment.

	
IntervallsWeighted.RemoveIntervallsContained(intervalls)

	remove intervalls that are fully contained in another.

[(10, 100), (20, 50), (70, 120), (130, 200), (10, 50), (140, 210), (150, 200)]

results:

[(10, 100), (70, 120), (130, 200), (140, 210)]

	
IntervallsWeighted.RemoveIntervallsSpanning(intervalls, fct=<function <lambda> at 0x6424578>)

	remove intervalls that are full covering
another, i.e. always keep the smallest.

[(10, 100), (20, 50), (70, 120), (40,80), (130, 200), (10, 50), (140, 210), (150, 200)]

result:

[(20, 50), (40, 80), (70, 120), (150, 200)]

	
IntervallsWeighted.ShortenIntervallsOverlap(intervalls, to_remove)

	shorten intervalls, so that there is no
overlap with another set of intervalls.

assumption: intervalls are not overlapping

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

SaryFasta.py - index fasta files by suffix array

Subroutines for working on I/O of large genomic files.

Index a fasta file to retrieve sequences by suffix-array fragment
search.

python SaryFasta.py [options] name [files]

	
SaryFasta.getHID(sequence)

	returns a hash identifier for a sequence.

	
SaryFasta.createDatabase(db, filenames, buf_size=400000000, force=False, regex_identifier=None)

	index files in filenames to create database.

buf_size: buffer size for a sary chunk.

Two new files are created - db.fasta and db_name.idx

regex_identifier: pattern to extract identifier from description line.
If None, the part until the first white-space character is used.

	
SaryFasta.benchmarkRandomFragment(fasta, size)

	returns a random fragment of size.

	
SaryFasta.verify(reference, fasta, num_iterations, fragment_size, stdout=<open file '<stdout>', mode 'w' at 0x7fcdf3ea9150>, quiet=False)

	verify two databases.

Get segment from fasta and check for presence in fasta2.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

Fasta.py - Methods for dealing with fasta files.

	Author:	

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

SuffixArray.py - sarry frontend

	Author:	Andreas Heger

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

Code

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

BlatTest.py -

	Author:	Andreas Heger

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

Code

	
exception BlatTest.Error

	Bases: exceptions.Exception

Base class for exceptions in this module.

	
exception BlatTest.ParsingError(message, line=None)

	Bases: BlatTest.Error

Exception raised for errors while parsing

	Attributes:

	message – explanation of the error

	
class BlatTest.Match

	a psl match.

Block coordinates are on the forward strand for target and on
the forward/reverse strand for the query depending on the strand.

The fields mQueryFrom/To and mSbjctFrom/To are always on the forward
strand.

	
convertCoordinates()

	convert coordinates.

This rescales the block positions so that they start at 0 and converts
the query to forward and the sbjct to forward/reverse coordinates.

About the psl psl format from the manual at
http://genome.ucsc.edu/google/goldenPath/help/pslSpec.html

‘’’
In general the coordinates in psl files are “zero based half open.” The first base in a sequence is numbered zero rather than one.
When representing a range the end coordinate is not included in the range. Thus the first 100 bases of a sequence are represented
as 0-100, and the second 100 bases are represented as 100-200.

There is a another little unusual feature in the .psl format. It has to do with how coordinates are handled on the negative strand.
In the qStart/qEnd fields the coordinates are where it matches from the point of view of the forward strand (even when the match is
on the reverse strand). However on the qStarts[] list, the coordinates are reversed.
‘’‘

I want to work in forward coordinates for the query and forward/reverse coordinates
for the sbjct.

	For a negative strand match, the following is done:

	
	invert mSbjctFrom and mSbjctTo with mSbjctLength

	add block sizes to mQueryStarts and mSbjctStarts

	invert mQueryStarts and mSbjctStarts

	reverse blocksize, mQueryStarts and mSbjctStarts

	
switchTargetStrand()

	switch the target strand.

Use in cases in which a feature has been defined on the negative target strand
with reverse coordinates. The result will be the same alignment using forward
coordinates on the target.

This method will also update the query strand and coordinates.

	
fromMaq(maq)

	build BLAT entry from a MAQ match.

see Maq.py

	
getBlocks()

	return a list of aligned blocks.

	
getMapQuery2Target()

	return a map between query to target.

If the strand is “-”, the coordinates for query are on
the negative strand.

	
getMapTarget2Query()

	return a map between target to query.

If the strand is “-”, the coordinates for query are on
the negative strand.

	
fromMap(map_query2target, use_strand=None)

	return a map between query to target.

	
fromPair(query_start, query_size, query_strand, query_seq, target_start, target_size, target_strand, target_seq)

	fill from two aligned sequences.

Note that sequences are case-sensitive.

	
BlatTest.iterator(infile)

	iterate over the contents of a psl file.

	
BlatTest.iterator_pslx(infile)

	iterate over the contents of a pslx file.

	
BlatTest.iterator_target_overlap(infile, merge_distance)

	iterate over psl formatted infile and return
blocks of target overlapping alignments.

	
BlatTest.iterator_query_overlap(infile, merge_distance)

	iterate over psl formatted infile and return
blocks of target overlapping alignments.

	
BlatTest.iterator_test(infile, report_step=100000)

	only output parseable lines from infile.

	
BlatTest.iterator_per_query(iterator_psl)

	iterate over the contents of a psl file per query

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

CBioPortal.py - Interface with the Sloan-Kettering cBioPortal webservice

	Author:	Ian Sudbery

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

The Sloan Kettering cBioPortal webservice provides access to a database of
results of genomics experiments on various cancers. The database is organised
into studies, each study contains a number of case lists, where each list contains
the ids of a set of patients, and genetic profiles, each of which represents an assay
conducted on the patients in the case list as part of the study.

The main class here is the CBioPortal class representing a connection to the cBioPortal
Database. Query’s are represented as methods of the class. Study ids or names or case lists
can be provided to the constructor to the object, via the setDefaultStudy and
setDefaultCaseList methods or to the indevidual query methods. Where ever possible
the validity of parameters is checked before the query is executed.

Whenever a query requires a genetic profile id or a list of such ids, but none are
given, the list of all profiles for which the show_in_analysis flag is set will be
used.

All of the commands provided in the webservice are implemented here and as far as
possible the name, syntax and paramter names of the query are identical to the
raw commands to the webservice. These queries are:

	getCancerStudies,

	getCaseLists,

	getProfileData,

	getMutationData,

	getClinicalData,

	getProteinArrayInfo,

	getProteinArrayData,

	getLink,

	getOncoprintHTML.

In addition two new queries are implememented that are not part of the webservice:

	getPercentAltered and

	getTotalAltered

These emulate the function of the website where the percent of cases that show any
alteration for the gene and profiles given are returned (getPercentAltered, or the
percent of cases that show an alteration in any of the genes (getTotalAltered) is
returned.

examples:

gene_list = ["TP53",
"BCL2",
"MYC"]
portal = CBioPortal()
portal.setDefaultStudy(study = "prad_mskcc")
portal.setDefaultCaseList(case_set_id = "prad_all_complete")
portal.getPercentAltered(gene_list = gene_list)

or more tersely:

portal.CBioProtal()
portal.getPercentAltered(study = "prad_mskcc", case_set_id = "prad_all_complete",
 gene_list = ["TP53","BCL2","MYC"],
 genetic_profile_id =["prad_mskcc_mrna"])

Any warnings returned by the query are stored in CBioPortal.last_warnings.

Query’s that would give too long an URL are split into smaller querys and the results
combined transparently.

A commandline interface is provided for convenience, syntax:

python CBioPortal.py [options] command(s)

	
exception CBioPortal.CDGSError(error, request)

	Bases: exceptions.Exception

exception that handles errors returned by querys in the database

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

CSV2DB.py - utilities for uploading a table to database

	Author:	Andreas Heger

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

Purpose

create a table from a csv separated file and load data into it.

This module supports backends for postgres and sqlite3. Column types are
auto-detected.

Todo

Use file import where appropriate to speed up loading. Currently, this is
not always the case.

Usage

Documentation

Code

	
CSV2DB.executewait(dbhandle, statement, error, retry=False, wait=5)

	execute sql statement.

Retry on error, if retry is True.
Returns a cursor object.

	
CSV2DB.quoteRow(row, take, map_column2type, missing_values, null='NULL', string_value='%s')

	return a dictionary with properly quoted values.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

GDLDraw.py -

	Author:	Andreas Heger

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

Code

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

Glam2.py - Parser for MAST files.

	Author:	

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

As of biopython 1.5.6, the MAST parser is broken.

	
Glam2.parse(infile)

	parse Glam2 output.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

Glam2Scan.py - Parser for MAST files

	Author:	

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

As of biopython 1.5.6, the MAST parser is broken.

	
class Glam2Scan.Match

	a Glam2Scan entry.

	
Glam2Scan.parse(infile)

	parse Glam2Scan output.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

IGV.py - Simple wrapper to the IGV socket interface

	Author:	Brent Pedersen

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

This code was written by Brent Pedersen.

Downloaded from https://github.com/brentp/bio-playground/blob/master/igv/igv.py
on Nov.30 2011.

	
class IGV.IGV(host='127.0.0.1', port=60151, snapshot_dir='/tmp/igv')

	Bases: object

Simple wrapper to the IGV (http://www.broadinstitute.org/software/igv/home)
socket interface (http://www.broadinstitute.org/software/igv/PortCommands)

requires:

	
	you have IGV running on your machine (launch with webstart here:

	http://www.broadinstitute.org/software/igv/download)

	
	you have enabled port communication in

	View -> Preferences... -> Advanced

Successful commands return ‘OK’

example usage:

>>> igv = IGV()
>>> igv.genome('hg19')
'OK'

#>>> igv.load(‘http://www.broadinstitute.org/igvdata/1KG/pilot2Bams/NA12878.SLX.bam‘)
‘OK’
>>> igv.go(‘chr1:45,600-45,800’)
‘OK’

	#save as svg, png, or jpg

	>>> igv.save('/tmp/r/region.svg')
'OK'
>>> igv.save('/tmp/r/region.png')
'OK'

	# go to a gene name.

	>>> igv.go('muc5b')
'OK'
>>> igv.sort()
'OK'
>>> igv.save('muc5b.png')
'OK'

	# get a list of commands that will work as an IGV batch script.

	>>> print "\n".join(igv.commands)
snapshotDirectory /tmp/igv
genome hg19
goto chr1:45,600-45,800
snapshotDirectory /tmp/r
snapshot region.svg
snapshot region.png
goto muc5b
sort base
snapshot muc5b.png

Note, there will be some delay as the browser has to load the annotations
at each step.

	
sort(option='base')

	options is one of: base, position, strand, quality, sample, and
readGroup.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

Logfile.py - logfile parsing

	Author:	Andreas Heger

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

Purpose

Parse logfiles

Usage

Example:

python cgat_script_template.py --help

Type:

python cgat_script_template.py --help

for command line help.

Documentation

Code

	
class Logfile.RuntimeInformation

	Bases: tuple

RuntimeInformation(script, options, jobid, host, has_finished, start_date, end_date, wall, utime, stime, cutime, cstime)

	
count(value) integer -- return number of occurrences of value

	

	
cstime

	Alias for field number 11

	
cutime

	Alias for field number 10

	
end_date

	Alias for field number 6

	
has_finished

	Alias for field number 4

	
host

	Alias for field number 3

	
index(value[, start[, stop]]) integer -- return first index of value.

	Raises ValueError if the value is not present.

	
jobid

	Alias for field number 2

	
options

	Alias for field number 1

	
script

	Alias for field number 0

	
start_date

	Alias for field number 5

	
stime

	Alias for field number 9

	
utime

	Alias for field number 8

	
wall

	Alias for field number 7

	
class Logfile.LogFileDataLines

	Bases: Logfile.LogFileData

record lines.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

MAST.py - Parser for MAST files

	Author:	

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

As of biopython 1.5.6, the MAST parser is broken.

	
class MAST.Match

	a MAST entry.

	
MAST.parse(infile)

	parse verbose MAST output.

	
MAST.frequencies2logodds(counts, background_frequencies=None)

	write a motif from counts to outfile.

Counts should be a numpy matrix with nalphabet columns and motif_width rows.

	
MAST.writeMast(outfile, logodds_matrix, alphabet)

	output logodds matrix in MAST format.

	
MAST.writeTomTom(outfile, counts_matrix, header=False)

	output counts matrix in tomtom format.

output counts with columns as motif positions
and rows as alphabet.

	
MAST.sequences2motif(outfile, sequences, background_frequencies=None, format='MAST')

	write a motif defined by a collection of sequences to outfile.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

Tophat.py - working with tophat/cufflinks output files

	Author:	Andreas Heger

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

Code

	
Tophat.parseTranscriptComparison(infile)

	read cufflinks 1.0.3 output in infile stream.

returns a two-level dictionary mapping with levels track and contig.

	
class Tophat.Locus

	Bases: tuple

Locus(locus_id, contig, strand, start, end, transcript_ids, transcripts)

	
contig

	Alias for field number 1

	
count(value) integer -- return number of occurrences of value

	

	
end

	Alias for field number 4

	
index(value[, start[, stop]]) integer -- return first index of value.

	Raises ValueError if the value is not present.

	
locus_id

	Alias for field number 0

	
start

	Alias for field number 3

	
strand

	Alias for field number 2

	
transcript_ids

	Alias for field number 5

	
transcripts

	Alias for field number 6

	
class Tophat.Tracking

	Bases: tuple

Tracking(transfrag_id, locus_id, ref_gene_id, ref_transcript_id, code, transcripts)

	
code

	Alias for field number 4

	
count(value) integer -- return number of occurrences of value

	

	
index(value[, start[, stop]]) integer -- return first index of value.

	Raises ValueError if the value is not present.

	
locus_id

	Alias for field number 1

	
ref_gene_id

	Alias for field number 2

	
ref_transcript_id

	Alias for field number 3

	
transcripts

	Alias for field number 5

	
transfrag_id

	Alias for field number 0

	
Tophat.TranscriptInfo

	alias of Transfrag

	
Tophat.iterate_tracking(infile)

	parse .tracking output file from cuffcompare

returns iterator with list of loci.

	
Tophat.iterate_locus(infile)

	parse .loci output file from cuffcompare

returns iterator with list of loci.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

VCF.py - Tools for working with VCF files

	Author:	Andreas Heger

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

The Variant Call Format (vcf) is described
here:

http://www.1000genomes.org/wiki/doku.php?id=1000_genomes:analysis:vcf4.0

Code

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

MACS.py - Parser for MACS output

	Author:	Andreas Heger

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

The Pipeline module contains various utility functions
for parsing MACS output.

API

	
class WrapperMACS.MacsPeak

	Bases: tuple

MacsPeak(contig, start, end, length, summit, tags, pvalue, fold, fdr)

	
contig

	Alias for field number 0

	
count(value) integer -- return number of occurrences of value

	

	
end

	Alias for field number 2

	
fdr

	Alias for field number 8

	
fold

	Alias for field number 7

	
index(value[, start[, stop]]) integer -- return first index of value.

	Raises ValueError if the value is not present.

	
length

	Alias for field number 3

	
pvalue

	Alias for field number 6

	
start

	Alias for field number 1

	
summit

	Alias for field number 4

	
tags

	Alias for field number 5

	
WrapperMACS.iterateMacsPeaks(infile)

	iterate over peaks.xls file and return parsed data.
The fdr is converted from percent to values between 0 and 1.

	
class WrapperMACS.Macs2Peak

	Bases: tuple

Macs2Peak(contig, start, end, length, summit, pileup, pvalue, fold, fdr, name)

	
contig

	Alias for field number 0

	
count(value) integer -- return number of occurrences of value

	

	
end

	Alias for field number 2

	
fdr

	Alias for field number 8

	
fold

	Alias for field number 7

	
index(value[, start[, stop]]) integer -- return first index of value.

	Raises ValueError if the value is not present.

	
length

	Alias for field number 3

	
name

	Alias for field number 9

	
pileup

	Alias for field number 5

	
pvalue

	Alias for field number 6

	
start

	Alias for field number 1

	
summit

	Alias for field number 4

	
WrapperMACS.iterateMacs2Peaks(infile)

	iterate over peaks.xls file and return parsed data.
The fdr is converted from percent to values between 0 and 1.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	Modules

WrapperZinba.py - utility functions for zinba output

	Author:	Andreas Heger

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

Purpose

Usage

Documentation

Code

	
class WrapperZinba.ZinbaPeak

	Bases: tuple

ZinbaPeak(contig, unrefined_start, unrefined_end, strand, posterior, summit, height, refined_start, refined_end, median, fdr)

	
contig

	Alias for field number 0

	
count(value) integer -- return number of occurrences of value

	

	
fdr

	Alias for field number 10

	
height

	Alias for field number 6

	
index(value[, start[, stop]]) integer -- return first index of value.

	Raises ValueError if the value is not present.

	
median

	Alias for field number 9

	
posterior

	Alias for field number 4

	
refined_end

	Alias for field number 8

	
refined_start

	Alias for field number 7

	
strand

	Alias for field number 3

	
summit

	Alias for field number 5

	
unrefined_end

	Alias for field number 2

	
unrefined_start

	Alias for field number 1

	
WrapperZinba.iteratePeaks(infile)

	iterate of zinba peaks in infile.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

CGAT Pipelines

	Installing CGAT pipelines
	Downloading and installing the source code

	Setting up the computing environment

	Software requirements

	Using CGAT pipelines
	Introduction

	Setting up a pipeline

	Running a pipeline

	Building pipeline reports

	Building CGAT pipelines
	Overview

	Guidelines

	Running commands within tasks

	Tracks

	Databases

	Reports

	Configuration values

	Documentation

	Using other pipelines

	Publishing data

	Checking requisites

	Writing pipeline reports
	Background

	Advanced topics

	Background

	NGS Pipelines
	Genomics Pipelines

	NGS Pipelines

	Other pipelines

	Obsolete pipelines

	Lecgacy pipelines
	Transcript comparison pipeline

	GPipe - Gene prediction pipeline

	454 Transcript mapping pipeline

	OPTIC

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	CGAT Pipelines

Installing CGAT pipelines

The CGAT pipelines, scripts and libraries make several assumptions about
the computing environment. This section describes how to install the code
and set up your computing environment.

Downloading and installing the source code

To obtain the latest code, check it out from the public mercurial [http://mercurial.selenic.com] repository at:

hg clone http://www.cgat.org/hg/cgat/ cgat

Once checked-out, you can get the latest changes via pulling and updating:

hg pull
hg update

Some scripts contain cython code that needs to be recompiled if the
script or the pysam [http://code.google.com/p/pysam/] installation has changed. To rebuild all scripts,
for example after updating the repository, type:

python cgat/scripts/cgat_rebuild_extensions.py

Recompilation requires a C compiler to be installed.

Setting up the computing environment

The pipelines assume that Sun Grid Engine has been installed. Other queueing systems
might work, but expect to be disappointed. The pipeline is started on a
submit host assuming a default queue all.q. Other queues can be specified on the
command line, for example:

python cgat/CGATPipelines/pipeline_<name>.py --cluster-queue=medium_jobs.q

A pipeline might start up to -p/--multiprocess processes. Preferentially,
tasks are sent to the cluster, but for some tasks this is not possible.
These might thus run on the submit host, so make sure it is fairly powerful.

Pipelines expects that the working directory is accessible with
the same path both from the submit and the execution host.

Software requirements

On top of pipeline specific bioinformatics software, CGAT pipelines
make use a variety of software. Unfortunately we can’t support many
versions. The following table gives a list software we have currently
installed:

	Section
	Software
	Version

	apps
	java
	jre1.6.0_26

	apps
	gccxml
	0.9

	apps
	R
	2.14.1

	bio
	alignlib
	0.4.4

	apps
	python
	2.7.1

	apps
	perl
	5.12.3

	apps
	graphlib
	0.1

	bio
	abiwtap
	1.2.1

	bio
	bamstats
	1.22

	bio
	batman
	0.2.3

	bio
	bedtools
	2.13.3

	bio
	belvu
	2.16

	bio
	bfast
	0.6.5a

	bio
	bioprospector
	2004

	bio
	bowtie
	0.12.7

	bio
	bwa
	0.5.9

	bio
	cdhit
	4.3

	bio
	clustalw
	2.1

	bio
	cufflinks
	1.3.0

	bio
	cpc
	0.9-r2

	bio
	dialign
	2.2.1

	bio
	ensembl
	62

	bio
	ensembl-variation
	62

	bio
	exonerate
	2.2.0

	bio
	fastqc
	0.9.2

	bio
	fastx
	0.0.13

	bio
	gatk
	1.0.5506

	bio
	gblocks
	0.91b

	bio
	gcprofile
	1.0

	bio
	gmap
	2011.03.28

	bio
	galaxy
	dist

	bio
	IGV
	2.0.23

	bio
	IGVTools
	1.5.12

	bio
	kent
	1.0

	bio
	hmmer
	3.0

	bio
	leotools
	0.1

	bio
	meme
	4.7.0

	bio
	muscle
	3.8.31

	bio
	mappability_map
	1.0

	bio
	ncbiblast
	2.2.25+

	bio
	newickutils
	1.3.0

	bio
	novoalign
	2.07.11

	bio
	novoalignCS
	1.01.11

	bio
	paml
	4.4c

	bio
	picard-tools
	1.48

	bio
	phylip
	3.69

	bio
	polyphen
	2.0.23

	bio
	samtools
	0.1.18

	bio
	shrimp
	2.1.1

	bio
	sicer
	1.1

	bio
	sift
	4.0.3

	bio
	simseq
	72ce499

	bio
	soap
	2.21

	bio
	soapsplice
	1.0

	bio
	sratoolkit
	2.1.7

	bio
	SpliceMap
	3.3.5.2

	bio
	stampy
	1.0.17

	bio
	statgen
	0.1.4

	bio
	storm
	0.1

	bio
	tabix
	0.2.5

	bio
	tophat
	1.4.1

	bio
	treebest
	0.1

	bio
	tv
	0.5

	bio
	vcftools
	0.1.8a

	bio
	emboss
	6.3.1

	bio
	velvet
	1.1.04

	bio
	perm
	0.3.5

	bio
	lastz
	1.02.00

	bio
	hpeak
	2.1

	bio
	boost
	1.46.1

	bio
	Trinity
	2012-01-25

	bio
	bowtie2
	2.0.0-beta5

	bio
	tophat2
	2.0.0

	bio
	all
	1.0

What exactly is required will depend on the particular pipeline. The pipeline assumes
that the executables are in the users PATH and that the rest of the environment
has been set up for each tool.

Additionally, there is a list of additional software that is required
that are usually shipped as a source package with the operating
system. These are:

sqlite

Python libraries

CGAT uses python extensively and is currently developed against python 2.7.1. Python
2.6 should work as well, but some libraries present in 2.7.1 but missing in 2.6
might need to be installed. Scripts have not yet been ported to python 3.

CGAT requires the following in-house python libraries to be installed:

	Library
	Version
	Purpose
	Download

	pysam [http://code.google.com/p/pysam/]
	0.6.0
	python bindings for samtools
	hg clone https://code.google.com/p/pysam/ pysam

	alignlib [http://wwwfgu.anat.ox.ac.uk/~andreas/alignlib]
	0.4.5
	C++ sequence alignment library with
python bindings.
	wget http://downloads.sourceforge.net/project/alignlib/alignlib/alignlib-0.4.5.tar.gz

	sphinxreport [http://code.google.com/p/sphinx-report/]
	latest
	report generator
	svn checkout https://sphinx-report.googlecode.com/svn/trunk/ sphinx-report

In addition, CGAT scripts make extensive use of the following python libraries (list below
might not be complete):

	Library
	Version
	Purpose

	numpy
	
	

	scipy
	
	

	rpy2
	
	

	matplotlib
	
	

	ruffus
	
	

	drmaa_python
	
	

The full list of modules installed at CGAT is:

	Module
	Version
	Method

	pycairo
	01/08/06
	S

	pygjobject
	2.20.0
	S

	pygtk
	2.16.0
	S

	wxPython
	2.9.1.1
	S

	matplotlib
	1
	S

	numpy
	01/05/01
	E

	scipy
	0.8.0
	S

	rpy
	1.0.3
	S

	rpy2
	02/02/00
	S

	networkx
	1.3
	E

	pytables
	2.2
	

	pygccxml
	1
	S

	pyplusplus
	1
	S

	bx.python
	
	

	pygresql
	4
	E

	myqsl-python
	01/02/03
	E

	biopython
	1.56
	E

	ply
	3.3
	E

	psyco
	
	

	pyrex
	0.9.9
	E

	cython
	0.13
	E

	sphinx
	1.0.5
	E

	reportlab
	2.5
	E

	guppy
	0.1.9
	E

	pil
	01/01/07
	E

	threadpool
	01/02/07
	E

	progressbar
	2.3
	E

	virtualenv
	01/05/01
	E

	sqlalchemy
	0.6.5
	E

	ruffus
	2.2
	E

	drmaa
	0.4b3
	E

	bx.python
	12/01/10
	S

	corebio
	0.5.0
	E

	weblogolib
	3
	E

	mercurial
	01/07/03
	E

	scikits.learn
	0.7.1
	E

	web.py
	0.34
	E

	pandas
	0.5.0
	E

	pybedtools
	0.6
	E

Method : Installation method (E = easy_install/setuptools, S =
setup.py/distutils, C = CGAT)

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	CGAT Pipelines

Using CGAT pipelines

This section provides a tutorial-like introduction to CGAT pipelines.

Introduction

A pipeline takes input data and performs a series of automated steps (task) on it to
produce some output data.

Each pipeline is usually coupled with a SphinxReport document to summarize and
visualize the results.

It really helps if you are familiar with following:

	the unix command line to run and debug the pipeline

	python [http:www.python.org] in order to understand what happens in the pipeline

	ruffus [http://www.ruffus.org.uk/] in order to understand the pipeline code

	sge [http://wikis.sun.com/display/GridEngine/Home] in order to monitor your jobs

	mercurial [http://mercurial.selenic.com/wiki/] in order to up-to-date code

Setting up a pipeline

Before starting, check that your computing environment is appropriate
(see Installing CGAT pipelines). Once all components are in place, setting up a
pipeline involves the following steps:

Step 1: Get the latest clone of the cgat script repository:

hg clone http://www.cgat.org/hg/cgat/ src

Note

You need to have mercurial installed.

The directory src is the source directory. It will be abbreviated
<src> in the following commands. This directory will contain the pipeline
master script named pipeline_<name>.py, the default configuration files
and all the helper scripts and libraries to run the pipeline.

Step 2: Create a working directory and enter it. For example:

mkdir version1
cd version1

The pipeline will live there and all subsequent steps should be executed
from within this directory.

Step 3: Obtain and edit an initial configuration file. Ruffus pipelines are controlled
by a configuration file. A configuration file with all the default values can be
obtained by running:

python <src>/pipeline_<name>.py config

This will create a new pipeline.ini file. YOU MUST EDIT THIS FILE.
The default values are likely to use the wrong genome or point to non-existing
locations of indices and databases. The configuration file should be well documented
and the format is simple. The documenation for the
ConfigParser [http://docs.python.org/library/configparser.html] python module
contains the full specification.

Step 4: Add the input files. The required input is specific for each pipeline; read
the pipeline documentation to find out exactly which files are needed. Commonly, a pipeline
works from input files copied or linked into the working directory and named
following pipeline specific conventions.

Running a pipeline

Pipelines are controlled by a single python script called pipeline_<name>.py
that lives in the source directory. Command line usage information is available
by running:

python <src>/pipeline_<name>.py --help

The basic syntax for pipeline_<name>.py is:

python <src>/pipeline_<name>.py [options] _COMMAND_

COMMAND can be one of the following:

	make <task>

	run all tasks required to build task

	show <task>

	show tasks required to build task without executing them

	plot <task>

	plot image (requires inkscape [http://inkscape.org/]) of pipeline state for task

	touch <task>

	touch files without running task or its pre-requisites. This sets the
timestamps for files in task and its pre-requisites such that they will
seem up-to-date to the pipeline.

	config

	write a new configuration file pipeline.ini with default values. An existing
configuration file will not be overwritten.

	clone <srcdir>

	clone a pipeline from srcdir into the current
directory. Cloning attempts to conserve disk space by linking.

In case you are running a long pipeline, make sure you start it appropriately, for example:

nice -19 nohup <src>/pipeline_<name>.py make full

This will keep the pipeline running if you close the terminal.

Troubleshooting

Many things can go wrong while running the pipeline. Look out for

	
	bad input format. The pipeline does not perform sanity checks on the input format.

	If the input is bad, you might see wrong or missing results or an error message.

	
	pipeline disrutions. Problems with the cluster, the file system or the controlling terminal

	might all cause the pipeline to abort.

	
	bugs. The pipeline makes many implicit assumptions about the input files and the programs it

	runs. If program versions change or inputs change, the pipeline might not be able to deal with it.
The result will be wrong or missing results or an error message.

If the pipeline aborts, locate the step that caused the error by reading the logfiles and
the error messages on stderr (nohup.out). See if you can understand the error and guess
the likely problem (new program versions, badly formatted input, ...). If you are able to fix
the error, remove the output files of the step in which the error occured and restart the
pipeline. It should continue from the appropriate location.

Note

Look out for upstream errors. For example, the pipeline might build a geneset filtering
by a certain set of contigs. If the contig names do not match, the geneset will be empty,
but the geneset building step might conclude successfully. However, you might get an error
in any of the downstream steps complaining that the gene set is empty. To fix this, fix
the error and delete the files created by the geneset building step and not just the step
that threw the error.

Updating to the latest code version

To get the latest bugfixes, go into the source directory and type:

hg pull
hg update

The first command retrieves the latest changes from the master repository
and the second command updates your local version with these changes.

Building pipeline reports

Some of the pipelines are associated with an automated report generator to display
summary information as a set of nicely formatted html pages. In order to
build the documentation, drop the appropriate conf.py and sphinxreport.ini
configuration files into the working directory and run the pipeline command:

nice -19 pipeline_<name>.py make build_report

This will create the report from scratch in the current directory. The report can
be viewed opening the file <work>/report/html/contents.html in your browser.

Sphinxreport is quite powerful, but also runs quite slowly on large projects that
need to generate a multitude of plots and tables. In order to speed up this process,
there are some advanced features that Sphinxreport offers:

	caching of results

	multiprocessing

	incremental builds

	separate build directory

Please see the sphinxreport [http://code.google.com/p/sphinx-report/] documentation for more information.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	CGAT Pipelines

Building CGAT pipelines

The best way to build a pipeline is to start from an example. There are several
pipelines available, see CGAT Pipelines. To start a new project, use
pipeline_quickstart.py:

python <srcdir>pipeline_quickstart.py --name=test

This will create a new directory called test in the current directory.

Another source of information is the script pipeline_template.py in
the source directory.

This section describes how CGAT pipelines can be constructed using the
Pipeline module. The Pipeline.py module contains a
variety of useful functions for pipeline construction.

Overview

Pipelines generally have a similar structure. Pipelines are implemented
as a pipeline script in the source directory called pipeline_<somename>.py
and a file pipeline_<somename>.ini with default configuration values.

Pipeline input

Pipelines are executed within a dedicated working directory. They usually require
the following files within this directory:

	a pipeline configuration file pipeline.ini

	input data files, usually linked in from a data repository

Other files that might be used in a pipeline are:

	external data files such as genomes that a referred to by they their full path name.

	sphinxreport.ini and conf.py for automated reports.

The pipelines will work from the input files in the working directory, usually identified by their
suffix. For example, a ChIP-Seq pipeline might look for any *.fastq.gz files in the directory,
run QC on these, map the reads to a genome sequence, call peaks, do motif analyses, etc.

Pipeline output

The pipeline will create files and database tables in the working directory.
When building a pipeline, you can choose any
file/directory layout that suits your needs. Some prefer flat hierarchies with many files, while
others prefer deep directories.

Two directories have a special function and can be used for exporting pipeline results (see PipelinePublishing):

The export directory contains all files that will be referred to directly in the report
or that later should be published by the pipeline. For example, pdf documents created by the peak caller
or logo images created by a motif tool should go there.

The directory report will contain the automatically generated report.

Guidelines

To preserve disk space, please always work use compressed files as much as possible.
Most data files compress very well, for example fastq files often compress by a factor of 80% or more:
a 10Gb file will use just 2Gb.

Working with compressed files is straight-forward using unix pipes and the commands gzip, gunzip or zcat.

If you require random access to a file, load the file into the database and index it
appropriately. Genomic interval files can be indexed with tabix to allow random access.

Running commands within tasks

To run a command line program within a pipeline task, build a statement and call the
Pipeline.run() method:

@files('*.unsorted', suffix('.unsorted'), '.sorted')
def sortFile(infile, outfile):

 statement = '''sort %(infile)s > %(outfile)s'''
 P.run()

On calling the Pipeline.run() method, the environment of the caller
is examined for a variable called statement. The variable is subjected
to string substitution from other variables in the local namespace. In the
example above, %(infile)s and %(outfile)s are substituted with the
values of the variables infile and outfile, respectively.

The same mechanism also permits setting configuration parameters, for example:

@files('*.unsorted', suffix('.unsorted'), '.sorted')
def sortFile(infile, outfile):

 statement = '''sort -t %(tmpdir)s %(infile)s > %(outfile)s'''
 P.run()

will automatically substitute the configuration parameter tmpdir
into the command. See ConfigurationValues for more on using configuration
parameters.

The pipeline will stop and return an error if the command exits with an error code.

If you chain multiple commands, only the return value of the last command
is used to check for an error. Thus, if an upstream command fails, it will go unnoticed.
To detect these errors, insert the checkpoint statement between commands. For example:

@files('*.unsorted.gz', suffix('.unsorted.gz'), '.sorted)
def sortFile(infile, outfile):

 statement = '''gunzip %(infile)s %(infile)s.tmp;
 checkpoint;
 sort -t %(tmpdir)s %(infile)s.tmp > %(outfile)s;
 checkpoint;
 rm -f %(infile)s.tmp
 P.run()

Of course, the statement aboved could be executed more efficiently using pipes:

@files('*.unsorted.gz', suffix('.unsorted.gz'), '.sorted.gz')
def sortFile(infile, outfile):

 statement = '''gunzip < %(infile)s
 | sort -t %(tmpdir)s
 | gzip > %(outfile)s'''
 P.run()

The pipeline inserts code automatically to check for error return codes if multiple commands are
combined in a pipe.

Running commands on the cluster

In order to run commands on cluster, use to_cluster=True.

To run the command from the previous section on the cluster:

@files('*.unsorted.gz', suffix('.unsorted.gz'), '.sorted.gz')
def sortFile(infile, outfile):

 to_cluster = True
 statement = '''gunzip < %(infile)s
 | sort -t %(tmpdir)s
 | gzip > %(outfile)s'''
 P.run()

The pipeline will automatically create the job submission files, submit
the job to the cluster and wait for its return.

Pipelines will use the command line options --cluster-queue,
--cluster-priority, etc. for global job control. For example, to
change the priority when starting the pipeline, use:

python <pipeline_script.py> --cluster-priority=-20

To set job options specific to a task, you can define additional variables:

@files('*.unsorted.gz', suffix('.unsorted.gz'), '.sorted.gz')
def sortFile(infile, outfile):

 to_cluster = True
 job_queue = 'longjobs.q'
 job_priority = -10
 job_options= "-pe dedicated 4 -R y"

 statement = '''gunzip < %(infile)s
 | sort -t %(tmpdir)s
 | gzip > %(outfile)s'''
 P.run()

The above statement will be run in the queue longjobs.q at a priority of -10.
Additionally, it will be executed in the parallel environment dedicated with at
least 4 cores.

Array jobs can be controlled through the job_array variable:

@files('*.in', suffix('.in'), '.out')
def myGridTask(infile, outfile):

 job_array=(0, nsnps, stepsize)

 statement = '''grid_task.bash %(infile)s %(outfile)s
 > %(outfile)s.$SGE_TASK_ID 2> %(outfile)s.err.$SGE_TASK_ID
 '''
 P.run()

Note that the grid_task.bash file must be grid engine aware. This means
it makes use of the SGE_TASK_ID, SGE_TASK_FIRST, SGE_TASK_LAST and
SGE_TASK_STEPSIZE environment variables to select the chunk of data it wants
to work on.

The job submission files are files called tmp* in the working directory.
These files will be deleted automatically. However, the files will remain after
aborted runs to be cleaned up manually.

Tracks

A pipeline typically processes the data streams from several experimental
data sources. These data streams are usually processed separately (processing,
quality control) and as aggregates. The module PipelineTracks helps
implementing this.

Databases

Loading data into the database

Pipeline.py offers various tools for working with databases. By default,
it is configured to use an sqlite3 database in the working directory called csvdb.

Tab-separated output files can be loaded into a table using the Pipeline.load()
function. For example:

@transform('data_*.tsv.gz', suffix('.tsv.gz'), '.load')
def loadTables(infile, outfile):
 P.load(infile, outfile)

The task above will load all tables ending with tsv.gz into the database
Table names are given by the filenames, i.e, the data in data_1.tsv.gz will
be loaded into the table data_1.

The load mechanism uses the script csv2db.py and can be configured using
the configuration options database and csv2db_options. Additional options
can be given via the optional options argument:

@transform('data_*.tsv.gz', suffix('.tsv.gz'), '.load')
def loadTables(infile, outfile):
 P.load(infile, outfile, "--index=gene_id")

Connecting to a database

To use data in the database in your tasks, you need to first connect to the
database. It helps to encapsulate the connection in a separate function. For
example:

def connect():
 dbh = sqlite3.connect(PARAMS["database"])
 statement = '''ATTACH DATABASE '%s' as annotations''' % (PARAMS["annotations_database"])
 cc = dbh.cursor()
 cc.execute(statement)
 cc.close()

 return dbh

The above function will connect to the database. It will also attach a secondary database
annotations.

The following example illustrates how to use the connection:

@transform(...)
def buildCodingTranscriptSet(infile, outfile):

 dbh = connect()

 statement = '''SELECT DISTINCT transcript_id FROM transcript_info WHERE transcript_biotype = 'protein_coding' '''
 cc = dbh.cursor()
 transcript_ids = set([x[0] for x in cc.execute(statement)])
 ...

Reports

The Pipeline.run_report() method builds or updates reports using SphinxReport [http://code.google.com/p/sphinx-report/]. Usually, a pipeline
will simply contain the following:

@follows(mkdir("report"))
def build_report():
 '''build report from scratch.'''

 E.info("starting report build process from scratch")
 P.run_report(clean = True)

@follows(mkdir("report"))
def update_report():
 '''update report.'''

 E.info("updating report")
 P.run_report(clean = False)

This will add the two tasks build_report and update_report to the pipeline. The former completely rebuilds
a report, while the latter only updates changed pages. The report will be in the directory report.

Note that report building requries two files in the working directory:

	sphinxreport.ini - configuration values for Sphinxreport [http://code.google.com/p/sphinx-report/].

	conf.py - configuration values for sphinx.

The section Writing pipeline reports contains more information.

Configuration values

Setting up configuration values

Pipelines are configured via a configuration script. The
following snippet can be included at the beginning of a pipeline
to set it all up:

load options from the config file
import Pipeline as P
P.getParameters(
 ["%s.ini" % __file__[:-len(".py")],
 "../pipeline.ini",
 "pipeline.ini"])
PARAMS = P.PARAMS

Configuration parameters will be read first from the
file named pipeline_<pipeline_name>.ini in the source directory.
These sets all configuration values to default paramteres.

Next, the file ../pipeline.ini will be read (if it exists) and configuration
values that are specific to a certain project will overwrite default values.

Finally, run specific configuration will be read from the file pipeline.ini
in the working directory.

The method Pipeline.getParameters() reads parameters and updates a global
dictionary of parameter values. It automatically guesses the type of parameters
in the order of int(), float() or str().

If a configuration variable is empty (var=), it will be set to None.

Configuration values from another pipeline can be added in a separate namespace:

PARAMS_ANNOTATIONS = P.peekParameters(PARAMS["annotations_dir"],
 "pipeline_annotations.py")

The statement above will load the parameters from a pipeline_annotations pipeline with
working directory annotations_dir.

Using configuration values

Configuration values are accessible via the PARAMS variable. The PARAMS
variable is a dictionary mapping configuration parameters to values. Keys are in the
format section_parameter. For example, the key bowtie_threads will provide the
configuration value of:

[bowtie]
threads=4

In a script, the value can be accessed via PARAMS["bowtie_threads"].

Undefined configuration values will throw a ValueError. To test if
a configuration variable exists, use:

if 'bowtie_threads' in PARAMS: pass

To test, if it is unset, use:

if 'bowie_threads' in PARAMS and not PARAMS['botwie_threads']: pass

Task specific parameters

Task specific parameters can be set by creating a task specific section in
the pipeline.ini. The task is identified by the output filename.
For example, given the following task:

@files('*.fastq', suffix('.fastq'), '.bam')
def mapWithBowtie(infile, outfile):
 ...

and the files data1.fastq and data2.fastq in the working directory,
two output files data.bam and data2.bam will be created on executing
mapWithBowtie. Both will use the same parameters. To set parameters specific to the
execution of data1.fastq, add the following to pipeline.ini:

[data1.fastq]
bowtie_threads=16

This will set the configuration value bowtie_threads to 16 when using the command
line substitution method in Pipeline.run(). To get an task-specific parameter values in
a python task, use:

@files('*.fastq', suffix('.fastq'), '.bam')
def mytask(infile, outfile):
 MY_PARAMS = P.substituteParameters(locals())

Thus, task specific are implemented generically using the Pipeline.run() mechanism,
but pipeline authors need to explicitely code for track specific parameters.

Documentation

Up-to-date and accurate documentation is crucial for writing portable and maintainable
pipelines. To document your pipelines write documentation as you would for a module.
See pipeline_template.py and other pipelines for an example.

To rebuild all documentation, enter the doc directory in the source directory and
type:

cd doc
python collect.py

This will collect all new scripts to the documentation.

Next, edit the file contents.rst and add your pipeline to the table of pipelines. Finally, type:

make html

to rebuild the documentation.

Using other pipelines

You can use the output of other pipelines within your own pipelines. pipeline_annotations
is an example - it provides often used annotation data sets for an analysis. How to load another
pipelines parameters, connect to its database and write a modular report have been discussed above.

If you write a pipeline that is likely to be used by others, it is best to provide an interface.
For example, the pipeline_annotations pipeline has an interface section that list all the
files that are produced by the pipeline. Other pipelines can refer to the interface section without
having to be aware of the actual file names:

filename_cds = os.path.join(PARAMS["annotations_dir"],
 PARAMS_ANNOTATIONS["interface_geneset_cds_gtf"])

Running other pipelines within your pipeline should be possible as well - provided they are within
their own separate working directory.

Publishing data

To publish data and a report, use the Pipeline.publish_report() method, such as in the
following task:

@follows(update_report)
def publish_report():
 '''publish report.'''

 E.info("publishing report")
 P.publish_report()

On publishing a report, the report (in the directory report, specified by report_dir)
will get copied to the directory specified in the configuration value web_dir. Also, all files
in the export directory will get copied over and links pointing to such files will be
automatically corrected.

The report will then be available at http://www.cgat.org/downloads/%(project_id)s/report where
project_id is the unique identifier given to each project. It is looked up automatically, but the
automatic look-up requires that the pipeline is executed within the /ifs/proj directory.

If the option prefix is given to publish_report, all output directories will be output
prefixed by prefix. This is very useful if there is more than one report per project.

See Pipeline.publish_report() for more options.

Checking requisites

TODO

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	CGAT Pipelines

Writing pipeline reports

CGAT pipelines use SphinxReport [http://code.google.com/p/sphinx-report/] to report the outcome of a pipeline
run. Conceptually, the workflow is that a CGAT pipeline creates data
and uploads it into a database. SphinxReport [http://code.google.com/p/sphinx-report/] then creates a report
from the database.

Background

Todo

Some text here about why sphinxreport

Advanced topics

Conditional content

The ifconfig [http://sphinx-doc.org/ext/ifconfig.html] extension allows to include content depending on configuration
values. To use this extension you will need to modify
conf.py. The example below shows the modifications implemented
in <no title> to permit the conditional
inclusion of sections of the report depending on the mapper chosen:

add sphinx.ext.ifconfig to the list of extensions
extensions.append('sphinx.ext.ifconfig')

define a new configuration variable
##
Add custom configuration variables for ifconfig extension
def setup(app):
 app.add_config_value('MAPPERS', '', True)

Set the value of custom configuration variables
import CGAT.Pipeline as P
P.getParameters(
 ["%s/pipeline.ini" % os.path.splitext(__file__)[0],
 "../pipeline.ini",
 "pipeline.ini"])

MAPPERS = P.asList(P.PARAMS["mappers"])

The thus defined and set custom configuration value MAPPERS can
now be used inside an rst document:

.. toctree::
 :maxdepth: 2

 pipeline/Methods.rst
 pipeline/Status.rst
 pipeline/Mapping.rst
 pipeline/MappingSummary.rst
 pipeline/MappingContext.rst
 pipeline/MappingAlignmentStatistics.rst
 pipeline/MappingComplexity.rst

.. ifconfig:: "tophat" in MAPPERS

 .. toctree::
 pipeline/MappingTophat.rst

.. ifconfig:: "star" in MAPPERS

 .. toctree::
 pipeline/MappingStar.rst

.. ifconfig:: "tophat" in MAPPERS or "star" in MAPPERS or "gsnap" in MAPPERS

 .. toctree::
 pipeline/Validation.rst

Note that .. ifconfig needs to be a first level directive and
can not be include into another directive such as .. toctree.

Referring to other reports

The intersphinx [http://sphinx-doc.org/ext/intersphinx.html] extension permits referring to other
sphinxreport documents. To use this extension you will need to modify
your conf.py configuration file. For example:

add sphinx.ext.ifconfig to the list of extensions
extensions.append('sphinx.ext.intersphinx')

add mapping information
intersphinx_mapping = {
 'readqc': ('/ifs/projects/proj013/readqc/report/html', None) ,
 'mapping1': ('/ifs/projects/proj013/mapping1/report/html', None),
 'mapping2': ('/ifs/projects/proj013/mapping2/report/html', None),
 }

This will link to three other reports. The three reports are
abbreviated as readqc, mapping1 and mapping2. The paths
need to be the absolute location of the html build of the sphinx
documents you created previously. These directories should contain a
objects.inv file which is usually automatically created by sphinx.

To refer to the other documentation, type:

:ref:`My link to another documentation <identifier:label>`

label is a valid identifier in the referred to
document. For example:

:ref:`ReadQC <readqc:readqcpipeline>`

 ReadQC pipeline - fastqc

:ref:`Unique Mapping <mapping1:mappingpipeline>`

 Mapping pipeline - short read mapping with bwa. Only
 uniquely mapping reads are kept.

:ref:`Non-unique mapping <mapping2:mappingpipeline>`

 Mapping pipeline - short read mapping with bwa with same
 parameters as above, but all reads are kept.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	CGAT Pipelines

 This section provides some background on CGAT pipelines.

Background

There really are two types of pipelines. In production pipelines the inputs are usually
the same every time the pipeline is run and the output is known beforehand. For example,
read mapping and quality control is a typical pipeline. These pipelines can be well optimized
and can be re-used with little change in configuration.

analysis pipelines control scientific analyses and are much more in a state of flux.
Here, the input might change over time as the analysis expands and the output will change
with every new insight or new direction a project takes. It will be still a pipeline as long as
the output can be generated from the input without manual intervention. These pipelines leave
less scope for optimization compared to production pipelines and adapting a pipeline to
a new project will involve significant refactoring.

In CGAT, we are primarily concerned with analysis pipelines, though we have some
production pipelines for common tasks.

There are several ways to build pipelines. For example, there are generic workflow
systems like taverna [http://www.taverna.org.uk] which even provide GUIs for connecting
tasks. A developer writes some glue code permitting the output of one application to
be used as input for another application. Also, there are specialized workflow systems
for genomics, for example galaxy [https://main.g2.bx.psu.edu/], which allows you to save and share
analyses. New tools can be added to the system and new data imported easily for example
from the UCSC genome browser.

	Flexibility

	There always new tools and insights. A pipeline should be ultimately
flexible and not constraining us in the things we can do.

	Scriptability

	The pipeline should be scriptable, i.e, the whole pipeline can be run within
another pipeline. Similarly, parts of a pipeline can be duplicated to process
several data streams in parallel. This is a crucial feature in genome studies
as a single analysis will not permit making inferences by itself. For example,
consider you find in ChIP-Seq data from a particular transcription factor that
it binds frequently in introns. You will need to run the same analysis on
data from other transcription factors in order to assess if intronic binding is
remarkable.

	Reproducibility

	The pipeline is fully automated. The same inputs and configuration will produce
the same outputs.

	Reusability

	The pipeline should be able to be re-used on similar data, maybe only requiring
changes to a configuration file.

	Archivability

	Once finished, the whole project should be able to archived without too many
major dependencies on external data. This should be a simple process and hence
all project data should be self-contained. It should not involve going through
various directories or databases to figure out which files and tables belong
to a project or a project depends on.

There probably is not one toolset to satisfy all these criteria.. We use the following
tools to build a pipeline:

	ruffus [http://www.ruffus.org.uk/] to control the main computational steps

	sqlite [http://www.sqlite.org/] to store the results of the computational steps

	sphinxreport [http://code.google.com/p/sphinx-report/] to visualize the data in the sqlite database

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	CGAT Pipelines

NGS Pipelines

Genomics Pipelines

NGS Pipelines

Other pipelines

	pipeline_quickstart.py - setup a new pipeline

Obsolete pipelines

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	CGAT Pipelines

 	NGS Pipelines

pipeline_quickstart.py - setup a new pipeline

	Author:	

	Release:	Id

	Date:	December 09, 2013

	Tags:	Python

Purpose

Usage

Example:

python pipeline_quickstart.py --name=chipseq

Type:

python pipeline_quickstart.py --help

for command line help.

Documentation

Code

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	CGAT Pipelines

Lecgacy pipelines

Within of the Ponting group we have developed a few other pipelines
that are based on the GNU make utility. These pipelines are listed
below:

	Transcript comparison pipeline

	GPipe - Gene prediction pipeline

	454 Transcript mapping pipeline

	OPTIC

Some of these pipelines are still being used, though they are not actively
supported any more.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	CGAT Pipelines

 	Lecgacy pipelines

Transcript comparison pipeline

Purpose

Map 454 reads onto a genome and assemble overlapping
transcripts into transcript models.

The pipeline currently does not use base quality information
during mapping and does not consider alternative transcripts.

Setting up

To set up the pipeline in the current directory run:

python setup.py --method=compare_transcripts > setup.log

Link towards the genome from /net/cpp-data/backup/databases/indexed_fasta and
call the files genome.fasta and genome.idx. For example:

ln -s /net/cpp-data/backup/databases/indexed_fasta/hs_ncbi36_softmasked.fasta genome.fasta
ln -s /net/cpp-data/backup/databases/indexed_fasta/hs_ncbi36_softmasked.idx genome.idx

Input (required):

	%.gtf

	gtf files with (experimental) transcripts. The % denotes the
track name, for example heart.gtf, kidney.gtf, sample1.gtf, ...

	genome.fasta, genome.idx

	an indexed genome PARAM_GENOME. See also index_fasta.py.

	ensembl.gtf

	a gtf file with a reference sequence set: the default is ensembl,
but can be changed in PARAM_MASTER_SET_GENES.

	annotations.gff

	a gff file with annotated genomic regions. See
PARAM_GENOME_REGIONS. Use gtf2gff.py to create this file.

The pipeline includes additional information if it is present:

	%.coverage

	table with coverage information for a track. The output
is from blat2assembly.py

	%.polyA

	information about polyA tails. The output is from
blat2assembly.py

	%.readstats

	a table with read alignment statistics after filtering
(see output from MapTranscripts)

	%.readmap

	a table mapping gene_ids to read_ids after filtering
(see output from MapTranscripts)

	%.readinfo

	a table with read information.

	%.readgtf

	mapped locations of reads after filtering.

	PARAM_FILE_REPEATS_RATES

	gff formatted file of ancesctral repeats.
The score field contains the rate (see Makefile.ancestral_repeats)

	PARAM_FILE_REPEATS

	gff file with repeats in genome. These are used for masking in coding
potential predictions.

	PARAM_FILE_REPEATS_GC

	gff formatted file of ancesctral repeats.
The score field contains the G+C content (see Makefile.ancestral_repeats)

	PARAM_FILE_ALIGNMENTS

	psl formatted file with genomic alignments
between this species in query and another at appropriate evolutionary
distance in target.

	PARAM_FILENAME_GO (PARAM_FILENAME_GOSLIM)

	GO annotations for genes in the reference set. Example format is:

cell_location ENSPPYG00000000676 GO:0016020 membrane NA

	PARAM_FILENAME_TERRITORIES

	gene territories. GTF formatted file, an example entry would be:

chr1 protein_coding exon 3979975 4199559 . - . transcript_id "ENSPPYG00000000050"; gene_id "ENSPPYG00000000050";#

	PARAM_CPC_UNIREF

	uniref database to use for coding potential predictions.

	PARAM_DATABASE

	database name

Output from the mapTranscripts454 project can be imported with a single command:

make PATH_TO_MAPPING_DIR.add-tracks

Configuration

Edit the Makefile to configure the pipeline. See Parameters below.

Usage

The pipeline is controlled by running make [http://www.gnu.org/software/make] targets. The results of the pipeline
computation are stored as tab separated tables in the working directory. Most of these
tables are then imported into an sqlite [http://www.sqlite.org/] database called csvdb (see PARAM_DATABASE).

Annotation

Type:

make all

to do all.

Fine grained control

A more complete list of targets:

	all

	make all

	build

	only build, but do not import.

	import

	import

Visualization

The following targets aid visualizatiov:

	ucsc-tracks-gtf

	export the segments as compressed gtf files. Can be viewed as
user tracks in the ucsc [http://genome.ucsc.edu] genome browser.

GO analysis

GO analysis will compute the relative enrichment/depletion gene sets.

Requires PARAM_FILENAME_TERRITORIES, PARAM_FILENAME_GO
and PARAM_FILENAME_GOSLIM to be set.

There are two counting methods. The first method (go) assigns GO terms associated with
the reference gene set to TLs and counts these. The second method (territorygo) assigns TLs to genes
in the reference set and then does a GO analysis on theses.

Note

The convential GO analysis based on gene list is the territorygo method.

Usage

Usage:

make <track>:<slice>:<subset>:<background>.<go>.<method>analysis

The fields are:

	track

	the data track to be chosen.

	slice

	the slices correspond to flags in the table <track>_annotation. Use all
to use all segments in a track.

	subset

	the subset corresponds to a table that is joined with <track>_annotation to
restrict segments to a user-specified set. Use all for no restriction.

	background

	the background gene set

	go

	either go or goslim

	method

	either go or goterritory

Results will be in the directory <track>:<slice>:<subset>:<background>.<go>.<method>analysis.dir.

For example:

make thoracic:known:all:thoracic.go.goanalysis

will compute the enrichment of protein coding TL in the track thoracic using
all thoracic genes as the background.

The command:

make thoracic:known:all:ensembl.goslim.territorygoanalysis

will compute goslim term enrichment. The foreground set are genes from the reference set (ensembl) overlapping
protein coding TL in the track thoracic. The background is the complete reference gene
set (ensembl).

Annotator analysis

Annotator computes the statistical significance of enrichment/depletion
of genomic features (called segments) within genomic regions (called annotations).

To run annotator analysis, two files need to be present:

	A workspace

	A collection of annotations on the genome

Building workspaces

	Workspaces are built using makefile targets. For example to build :file:genome.workspace, type::

	make genome.workspace

All workspaces exclude contigs called matching random.

	genome.workspace

	full genome

	intergenic.workspace

	only intergenic regions

	intronic.workspace

	only intronic regions

	unknown.workspace

	both intergenic and intronic regions

	territories.workspace

	workspace of territories

	alignable.workspace

	only segments that can be aligned to a reference genome.

There is a convenience target:

make annotator-workspaces

that will build all available workspaces.

Annotations

Annotations are built using makefile targets.

	all.annotations:

	all subsets (all/known/unknown) for each track.

	architecture.annotations:

	annotations according to genes (intronic, intergenic, ...).

	{all,known,unknown}_sets.annotations

	annotations of known, unknown, all transcripts

	allgo_territories.annotations

	territories annotation with GO categories

	allgoslim_territories.annotations

	territories annotation with GOSlim categories

	intronicgo_territories.annotations

	territories annotation with GO categories

	intronicgoslim_territories.annotations

	territories annotation with GOSlim categories

	intergenicgo_territories.annotations

	territories annotation with GO categories

	intergenicgoslim_territories.annotations

	territories annotation with GOSlim categories

There is a convenience target:

make annotator-annotations

that will build all available annotations.

Usage

In order to perform Annotator analyses, you run a make target:

make <track>:<slice>:<subset>:<workspace>:<workspace2>_<annotations>.annotators

The fields determine which segments are used for the enrichment analysis.

	track

	the data track to be chosen.

	slice

	the slices correspond to flags in the table <track>_annotation. Use all
to use all segments in a track.

	subset

	the subset corresponds to a table that is joined with <track>_annotation to
restrict segments to a user-specified set. Use all for no restriction.

	workspace

	the workspace to be used

	workspace2

	a second workspace. The actual workspace will be the intersection of both workspaces.

	annotations

	annotations to use.

Note

Annotations, segments and the workspace need to be chosen carefully for each experiment.
For example, failing to use territories for goterritory analysis will measure enrichment
of segments within goterritories in general, and not necessarily relative enrichment
between go territories.

The results will be in the file <track>:<slice>:<subset>:<workspace>:<workspace2>_<annotations>.annotators.

Examples

The command:

make thoracic:unknown:all:intergenic:all_unknownsets.annotators

will test for enrichment among unknown transcripts in the track thoracic
with intergenic segments the other sets. The command:

make thoracic:intronic:all:intronic:territories_intronicgoslimterritories.annotators

will check for enrichment of intronic transcripts from the track merged
within intronic genomic segments that also have GO assignments (intersection
of workspaces intronic and territories. It will label GO territories
by GOslim territories.

Association analysis

Association analysis computes the significance of finding segments close
to annotations.

Type:

make annotator-distance-run

to run all association analyses.

Parameters

The following parameters can be set in the Makefile:

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	CGAT Pipelines

 	Lecgacy pipelines

GPipe - Gene prediction pipeline

Introduction

This document describes the pipeline of the Chris Ponting group
for predicting genes by homology. The input is a set of known transcripts
from a reference genome and the masked genomic sequence of a
target genome.

The pipeline predicts genes in a two-step procedure:

	Regions of similarity between the known transcripts and the reference genome
are identified using a quick heuristic search.

	The regions of similarity of step 1 are submitted to a sensitive, but slower gene
prediction program.

The pipeline contains many options to mask sequences, analyse and quality
control the predictions and store the results in a relational database.
This manual describes how to setup up the pipeline, run it on our cluster,
and analyse the results.

Note

The pipeline is tailored to the computational setup within the Ponting group.
Porting it elsewhere will require a significant amount of software installation
and configuration.

Setting up

The pipeline consists of a set of scripts and a makefile,
that glues together the various scripts. This section tells
you what programs are needed to be installed (Requirements),
how to install the software from the pipeline (Installation).

Next, the input files need to prepared (Input files).

Before starting the pipeline, you need to configure your environment
and the pipeline (Configuration).

Requirements

Gpipe requires following software to be installed:

	postgres

	Gpipe currently requires a postgres installation.

	seq

	Seg is a program to mask low complexity regions in protein sequences.

	exonerate

	Exonerate is a program to align a peptide sequence to a genomic sequence
(other alignment modes are possible). It offers heuristic modes, that allow for fast
scanning of large chunks of genomic DNA, and exhaustive modes, that do a full dynamic
programming mode. It is available at http://www.ebi.ac.uk/~guy/exonerate.

	python

	Most scripts require python...

	perl

	...unless they are written in perl

	alignlib

	a library for sequence alignments and its python interface. See
http://sourceforge.net/projects/alignlib.

	SGE

	Sun Grid Engine. Other schedulers might work.

	seq_pairs_kaks

	Leo’s wrapper around PAML (optional, only required for step12).

Installation

Untar and unpack the source code tarball. The directory in which it ends up
is the source directory.

Gpipe works in a working directory. To set up the pipeline with the current
directory as the working directory, run:

python <src>setup.py --method=gpipe --project=project_name > setup.log

src is the location of the source directory.

This will create a makefile in the current directory and give the project the
name project_name. The latter will be used as the name of the database schema
in postgres in which data will be stored.

Note that gpipe assumes that you use bash as you shell. In particular, it requires
that two functions are in your environment:

#-----------------------------------
helper functions for detecting errors in pipes
#-----------------------------------
detect_pipe_error_helper()
{
 while ["$#" != 0] ; do
 # there was an error in at least one program of the pipe
 if ["$1" != 0] ; then return 1 ; fi
 shift 1
 done
 return 0
}

detect_pipe_error()
{
 detect_pipe_error_helper "${PIPESTATUS[@]}"
 return $?
}

Once the code is in place, add the input files to the working and make sure
that all the other requirements are fulfilled.

Input files

Gpipe requires 5 files to run. These input files contain the reference gene set to predict with and
the genome sequence to predict in. Sample data is available at
http://genserv.anat.ox.ac.uk/downloads/software/gpipe/sampledata/gpipe_sample_data.tar.
To drop the sample data into your working directory, type:

wget ttp://genserv.anat.ox.ac.uk/downloads/software/gpipe/sampledata/gpipe_sample_data.tar
tar -xf gpipe_sample_data.tar
gunzip *

The filenames and their contents are:

	peptides.fasta

	A fasta-formatted file with peptide sequences. Each sequence is on a single line.
The identifier of a sequence is taken from the description line
with the pattern >(\S+) (characters between > and first white-space).
For example:

>CG11023-RA
MGERDQPQSSERISIFNPPVYTQHQVRNEAPYIPTTFDLLSDDEESSQRVANAGPSFRPL...
>CG2671-RA
MLKFIRGKGQQPSADRHRLQKDLFAYRKTAQHGFPHKPSALAYDPVLKLMAIGTQTGALK...
...

	genome.fasta and genome.idx

	A fasta-formatted file with the genomic sequence together with its index. This file can be created
from a collection of individual fasta formatted files (for example, per chromosome files) using the command:

python <src>index_fasta.py genome <somedir>my_dna_sequences*.fa.gz > genome.log

	reference.exons

	A table with gene models from the reference gene set.
This is a tab-formatted table with the following columns:

	transcript name

	name of the transcript consistent with peptides.fasta

	contig name

	name of the DNA segment the transcript is located on

	strand

	strand

	phase

	phase of that particular exon

	exon-id

	numerical number of exon

	peptide_start

	start of exon in transcript sequence

	peptide_end

	end of exon in transcript sequence

	genome_start

	start of exon on contig

	genome_end

	end of exon on contig

Coordinates are 0-based, half-open intervals. Genomic coordinates are forward/reverse strand coordinates.

For example:

CG10000-RA chr3R -1 0 1 0 126 24577165 24577291
CG10000-RA chr3R -1 0 2 126 287 24576946 24577107
CG10000-RA chr3R -1 1 3 287 466 24576706 24576885
CG10000-RA chr3R -1 2 4 466 930 24576187 24576651
CG10000-RA chr3R -1 0 5 930 1100 24575892 24576062
CG10000-RA chr3R -1 1 6 1100 1280 24575573 24575753
CG10000-RA chr3R -1 1 7 1280 1677 24574936 24575330
CG10001-RA chr3R -1 0 1 0 540 24569207 24569747
CG10001-RA chr3R -1 0 2 540 819 24566427 24566706
CG10001-RA chr3R -1 0 3 819 978 24566193 24566352

	map_rep2mem

	A table linking genes to transcripts. This tab-formatted table contains the following columns

	rep

	A gene identifier

	mem

	A transcript identifier

	size

	Transcript size

Configuration

To configure the pipeline, options can be set in the Makefile in the
working directory.

Options that might need to be changed:

	PARAM_PSQL_DATABASE

	The psql database

	PARAM_PSQL_HOST

	The psql host

	PARAM_PSQL_USER

	The psql username

Running the pipeline

The pipeline uses makefiles to control script logic. Before executing any make commands,
run:

source setup.csh

to update your paths and other environment variables.

Before first running the pipeline, some maintenance work need to
be performed like creating the database schema and the tables.
To prepare the pipeline, run:

make prepare

This needs to be done only once.

To run the pipeline, type:

make all

Gpipe writes status messages to the file log
in the working directory.

Results

Results of the gpipe run are stored in the psql database.

The view overview aggregates most results into a single
table for easy access.

Troubleshooting

If something goes wrong, the first step is to look at
the command line that caused the problem. To see the command
executed, run:

make -n <target>

We use Sun Grid Engine as job queueing system and assume that for all nodes
the code and data can be reached via the same mount point. All jobs that are run on
the cluster are prefixed by the MAKE variable $(CMD_REMOTE_SUBMIT). You can set this
variable to the empty string to run everything locally or on a mosix cluster:

make all CMD_REMOTE_SUBMIT=

Steps

The pipeline proceeds in 12 steps, which are:

	Step1

	Masking of protein sequences

	Step2

	Selecting representative transcipts to search with

	Step3

	Running exonerate

	Step4

	Running TBLASTN (disabled)

	Step5

	Collating putative gene-containing regions

	Step6

	Predicting genes for representative transcripts.

	Step7

	Predicting genes for redundant (alternative) transcripts

	Step8

	Predicting genes for member sequences

	Step9

	Analysing the predictions

	Step10

	Quality control of predictions

	Step11

	Removing redundant/erroneous predictions

	Step12

	Filter by ks (optional)

Glossary

	working directory

	The working directory. Location of the data files and results. All commands in this tutorial are
executed in the working directory.

	source directory

	The location of the source code. The place where the script setup.py resides.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	CGAT Pipelines

 	Lecgacy pipelines

454 Transcript mapping pipeline

Purpose

Map 454 reads onto a genome and assemble overlapping
transcripts into transcript models.

The pipeline currently does not use base quality information
during mapping and does not consider alternative transcripts.

Setting up

To set up the pipeline in the current directory run:

python setup.py --method=map_transcripts_454 > setup.log

Add or link fasta files of reads into directory. These should end
with the suffix .fasta. The pipeline will process several files at the same time.
For example:

tissue1.fasta
tissue2.fasta
tissue3.fasta

Link towards the genome from /net/cpp-data/backup/databases/indexed_fasta and
call the files genome.fasta and genome.idx. For example:

ln -s /net/cpp-data/backup/databases/indexed_fasta/hs_ncbi36_softmasked.fasta genome.fasta
ln -s /net/cpp-data/backup/databases/indexed_fasta/hs_ncbi36_softmasked.idx genome.idx

Build the index for gmap [http://www.molecularevolution.org/software/genomics/gmap] by running gmap_setup. By default, gmap [http://www.molecularevolution.org/software/genomics/gmap] indices should be put
in /net/cpp-mirror/databases/gmap. Provide the location to the indices using
the variable PARAM_GMAP_OPTIONS.

Note

Indices on networked disks are slow to load up. For performance reasons
work with local indices.

Configuration

Edit the Makefile to configure the pipeline. See Parameters below.

Parameters

The following parameters can be set in the Makefile:

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

 	CGAT Pipelines

 	Lecgacy pipelines

OPTIC

Purpose

The optic pipeline performs orthology assignment in
a group of species.

Setting up

Download CGAT code

CGAT code can be obtained by checking the latest version out from
mercurial:

hg clone http://www.cgat.org/hg/cgat

In the following, the location of the checked out code will be
referred to as <src>.

Requirements

Optic requires the following tools to be installed.

	Program
	Version
	Purpose

	postgres [http://www.postgresql.org/]
	
	database

	muscle [http://www.drive5.com/muscle/]
	>=3.81.3
	Multiple alignment

	phyop [http://www.cgat.org/~andreas/leotools-0.1.x86_64.linux.tar.gz]
	
	read mapping

	treebest [http://treesoft.sourceforge.net/treebest.shtml]
	>=0.1
	bam/sam files

	paml [http://abacus.gene.ucl.ac.uk/software/paml.html]
	>=4.4c
	evolutionary rate estimation

Genomes

The first step is to build the files with the genomic
sequences. Download fasta files with genomic secquences
and index them using the <src>/IndexedFasta.py tools.

Store the genomes in a separate directory (referred to
later as <genome>).

Genesets

The second step is to upload the genesets into the database. The
pipeline expects protein coding transcripts from ENSEMBL and requires
two files that can be downloaded from the ENSEMBL ftp site [http://www.ensembl.org/info/data/ftp/index.html]:

	File with peptide sequences, usually called species.pep.all.fa.gz

	
	File with exon coordinates in gtf format, usually called

	species.gtf.gz

The following example shows how to upload the human gene set. We are
going to be using ensembl version 62 on hg19:

mkdir -p genesets/hs62

cd genesets/hs62

ln -s <genomes>hg19.fasta genome.fasta

ln -s <genomes>hg19.idx genome.idx

ln -s <mirror>Homo_sapiens.GRCh37.62.gtf.gz reference.gtf.gz

ln -s <mirror>Homo_sapiens.GRCh37.62.pep.all.fa.gz reference.pep.fa.gz

Create the makefile:

python <src>setup.py -m ensembl -p cgat_hs62

Create database tables:

make prepare

Upload data:

make all

To verify all was ok, look at the file predictions.check. This file
compares the ENSEMBL supplied peptide sequences with those that have
been uploaded into the database.

The data is now stored in the database schema cgat_hs62.

You need to do this for all species that you want to run OPTIC on.

Make sure that the naming is consistent with the genomes. Thus,
hg19 should both refer to the gene set for human, but also
to the genomic sequence files (hg19.fasta) in the
<genomes> directory.

Running OPTIC

The optic pipeline works from several directories.

Create a working directory:

mkdir optic

Create a makefile:

python <src>setup.py -m optic -p optic
cd optic

Enter the data directory and create the following files:

	Makefile.inc

	common makefile file options. For example:

Global configuration options for OPTIC
PARAM_PROJECT_NAME=cgat_proj007

DIR_TMP=/tmp/

PARAM_DIR_DATA=<optic>data/

PARAM_SRC_SCHEMAS=cgat_hs62 cgat_mm62 cgat_gg62 cgat_ac62 cgat_xt62
cgat_dr62 cgat_oa65

PARAM_SPECIES_TREE=((((((cgat_hs62,cgat_mm62),cgat_oa65),cgat_gg62),cgat_ac62),cgat_xt62),cgat_dr62);

PARAM_ANALYSIS_DUPLICATIONS_OUTGROUPS=cgat_dr62

CGAT cluster params

DIR_SCRIPTS=<src>/

PARAM_QUEUE=all.q
PARAM_QUEUE_LOCAL=all.q
PARAM_QUEUE_SERVER=all.q

	schema2sp

	tsv file mapping species in database schema to swissprot name (required
for treebest):

map of species names to swiss prot taxonomic names
used for njtree
schema sp
cgat_hs62 HUMAN
cgat_mm62 MOUSE
cgat_xt62 XENTR
cgat_dr62 DANRE
cgat_ac62 ANOCA
cgat_gg62 CHICK
cgat_oa65 ORNAN

	species_tree

	the phylogeny of the species in newick format, for example:

((((((cgat_hs62,cgat_mm62),cgat_oa65),cgat_gg62),cgat_ac62),cgat_xt62),cgat_dr62);

	species_tree_permutations

	the phylogeny of the species and permutations of it. Usually
just a copy of species_tree

files needed for web server:

	schema2colour

	map species name to colour:

cgat_hs62 255,204,0
cgat_dr62 255,102,204
cgat_xt62 204,204,0
cgat_mm62 204,102,255
cgat_ac62 102,255,255
cgat_gg62 125,125,255
cgat_oa65 255,255,102

	schema2name

	map species name to real name:

schema name
cgat_hs62 H. sapiens
cgat_mm62 M. musculus
cgat_ac62 A. carolinensis
cgat_xt62 X. tropicalis
cgat_dr62 D. rerio
cgat_gg62 G. gallus
cgat_oa65 O. anatinus

	schema2url

	map species name to ENSEMBL URL:

cgat_hs62 displayGene?schema=%(species)s&gene_id=%(gene)s
cgat_mm62 displayGene?schema=%(species)s&gene_id=%(gene)s
cgat_ac62 displayGene?schema=%(species)s&gene_id=%(gene)s
cgat_xt62 displayGene?schema=%(species)s&gene_id=%(gene)s
cgat_dr62 displayGene?schema=%(species)s&gene_id=%(gene)s
cgat_gg62 displayGene?schema=%(species)s&gene_id=%(gene)s
cgat_oa65 displayGene?schema=%(species)s&gene_id=%(gene)s

Preparing data

Create export data files. This will create fasta file and exon
boundary files for all species:

make -C export export_clustering

Phyop

Setup pairwise phyop runs and run them:

make -C orthology_pairwise prepare

nice -19 nohup make -C orthology_pairwise all

Wait a while...

Clustering

The clustering step combines pairwise orthology assignments into
clusters of potential orthologs:

make -C orthology_multiple prepare
make -C orthology_mulitple all

Multiple alignment

Next, multiple alignments are built for each cluster:

make -C malis prepare
make -C malis all
make -C malis summary.dir
make -C malis summary

Orthologous groups

Based on the multiple alignments, trees are built within each cluster
and the trees are split into orthologous groups:

make -C paralogy_trees prepare
make -C paralogy_trees all
make -C paralogy_trees analysis
make -C paralogy_trees summary

Configuration

Edit the Makefile to configure the pipeline.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

Contributing to CGAT code

We encourage everyone who uses parts of the CGAT code collection to
contribute. Contributions can take many forms: bugreports, bugfixes,
new scripts and pipelines, documentation, tests, etc. All
contributions are welcome.

Checklist for new scripts/modules

Before adding a new scripts to the repository, please check if the
following are true:

	The script performs a non-trivial task. If a one-line command line
entry using standard unix commands can give the same effect, avoid
adding a script to the repository.

	The script has a clear purpose. Scripts should follow the
unix philosophy [http://en.wikipedia.org/wiki/Unix_philosophy].
They should concentrate on one task and do it well. Ideally,
the major input and output can be read from and written to standard
input and standard output, respectively.

	The script follows the naming convention of CGAT scripts.

	The scripts follows the Style Guide.

	The script implements the -h/--help options. Ideally, the
script has been derived from scripts/cgat_script_template.py.

	The script can be imported. Ideally, it imports without performing
any actions or writing output.

	The script is well documented and the documentation has been added
to the CGAT documentation. There should be an entry in
doc/scripts.rst and a file
doc/scripts/newscript.py.

	The script has at least one test case added to tests - and
the test works (see Testing).

Building extensions

Using pyximport [http://www.prescod.net/pyximport/], it is (relatively) straight-forward to add optimized
C-code to python scripts and, for example, access pysam internals and
the underlying samtools library. See for example <no title>.

To add an extension, the following needs to be in place:

	The main script (scripts/bam2stats.py). The important lines in this script
are:

try:
 import pyximport
 pyximport.install()
 import _bam2stats
except ImportError:
 import CGAT._bam2stats as _bam2stats

The snippet first attempts to build and import the extension by
setting up pyximport [http://www.prescod.net/pyximport/] and then importing the cython module
as _bam2stats.
In case this fails, as is the case for an installed code, it
looks for a pre-built extension (by setup.py) in the CGAT
pacakge.

	The cython implementation _bam2stats.pyx. This script imports the pysam API via:

from csamtools cimport *

This statement imports, amongst others, AlignedRead into the namespace. Speed can be
gained from declaring variables. For example, to efficiently iterate
over a file, an AlignedRead object is declared:

loop over samfile
cdef AlignedRead read
for read in samfile:
 ...

	A pyxbld providing pyximport [http://www.prescod.net/pyximport/] with build information.
Required are the locations of the samtools and pysam header libraries
of a source installation of pysam plus the csamtools.so
shared library. For example:

def make_ext(modname, pyxfilename):
 from distutils.extension import Extension
 import pysam, os
 dirname = os.path.dirname(pysam.__file__)[:-len("pysam")]
 return Extension(name = modname,
 sources=[pyxfilename],
 extra_link_args=[os.path.join(dirname,
 "csamtools.so")],
 include_dirs = pysam.get_include(),
 define_macros = pysam.get_defines())

If the script bam2stats.py is called the first time, pyximport [http://www.prescod.net/pyximport/] will
compile the cython [http://cython.org/] extension _bam2stats.pyx and make it available
to the script. Compilation requires a working compiler and cython [http://cython.org/] installation.
Each time _bam2stats.pyx is modified, a new compilation will take place.

pyximport [http://www.prescod.net/pyximport/] comes with cython [http://cython.org/].

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

Testing

This module describes the implementation of unit tests for the CGAT
code collection.

Testing scripts

Scripts are tested by comparing the expected output with the latest
output. The tests are implemented in the script
test_scripts.py.

This script collects tests from subdirectories in the tests
directory. Each test is named by the name of the script it tests.

Adding a new test manually

To add a new test for a CGAT script, create a new test
directory in the directory tests. The name of the test
directory has to correspond to the name of the script the tests will
tested.

In this directory, create a file called tests.yaml. This file is
in yaml format, a simple text-based format to describe nested data
structures.

The tests.yaml file contains the descriptions of the
individual tests to run. Each test is a separate data structure in
this file. The fields are:

	options

	Command line options for running the test. If you need to
provide additional files as input, use the %DIR% place
holder for the test directory.

	stdin

	Filename of file to use as stdin to the script. If no stdin is
required, set to null or omit.

	outputs

	A list of output files obtained by running the script that
should be compared to the list of files in references.
stdout signifies the standard output.

	references

	A list of expected output files. The order of outputs and
references should be the same. The reference files are
expected to be found in the directory test directory
and thus need not prefixed with a directory place holder.

	description

	A description of test.

To illustrate, we will be creating tests for the scripts
fasta2counts.py. First we create the test directory
tests/fasta2counts.py. Next we create a file
tests/fasta2counts.py/tests.yaml with the following content:

basic_test:
 outputs: [stdout]
 stdin: null
 references: [test1.tsv]
 options: --genome-file=<DIR>/small_genome

basic_test is the name of the test. There is no standard input
and the output of the script goes to stdout. Stdout will be compared to
the file test1.tsv. The script requires the --genome-file
option, which we supply in the options field. The <DIR> prefix
will be expanded to the directory that contains the file
tests.yaml.

Finally, we create the required input and reference files in the
test directory. Our directory structure looks thus:

|___tests
 |___fasta2counts.py
 | |___small_genome.fasta
 | |___small_genome.idx
 | |___test1.tsv
 | |___tests.yaml

Multiple tests per script can be defined by adding additional data structures in
the tests.yaml file.

Please write abundant tests, but keep test data to a minimum. Thus,
instead of running on a large bam file, create stripped down versions
containing only relevant data that is sufficient for the test at hand.

Re-use test data as much as possible. Some
generic test data used by multiple tests is in the tests/data
directory.

Creating a test

The script tests/setup_test.py can be used to set up
a testing stub. For example:

python tests/setup_test.py scripts/bam2bam.py

will add a new test for the script bam2bam.py.

The script will create a new testing directory for each script passed
on the command line and create a simple tests.yaml file. The
basic test will simply call a script to check if starts without error
and returns a version string.

Running tests

In order to run the tests on CGAT scripts, type:

nosetests tests/test_scripts.py

In order to get more information, type:

nosetests -v tests/test_scripts.py

To run individual tests, edit the file
tests/test_scripts.yaml. In order to restrict testing to
a single script, for example beds2counts.py, add the following:

restrict:
 regex: beds2counts.py

Testing modules

TODO e

Testing pipelines

TODO - describe pipeline_testing

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

Style Guide

Coding style

This style guide lays down coding conventions in the CGAT repository.
For new scripts, follow the guidelines below.

As the repository has grown over years and several people contributed,
the style between scripts can vary. For older scripts, follow the style within a
script/module. If you want to apply the newer style, make consistent
changes across the script.

In general, we want to adhere to the following conventions:

	Variable names are lower case throughout with underscores to
separate words, such as peaks_in_interval = 0

	
	Function names start with a lower case character and a

	verb. Additional words start in upper case, such as
doSomethingWithData()

	
	Class names start with an upper case character, additional words

	start again in upper case, such as class AFancyClass():

	
	Class methods follow the same convention as functions, such as

	self.calculateFactor()

	
	Class attributes follow the same convention as variables, such

	as self.factor

	
	Global variables - in the rare cases they are used, are upper case

	throughout such as DEBUG=False

	
	Module names should start with an uppercase letter, for example,

	TreeTools.py in order to distinguish them from built-in
and third-party python modules.

	Script names are lower-case throughout with underscores to
separate words, for example, bam2geneprofile.py or
join_table.py.

	Cython extensions to scripts (via pyximport) should be put
into the script name starting with an underscore. For example,
The extensions to bam2geneprofile.py are in
_bam2geneprofile.pyx.

For new scripts, use the template script_template.py.

The general rule is to write easily readable and maintainable
code. Thus, please

	document code liberally and accurately

	
	make use of whitespaces and line-breaks to break long statements

	into easily readable statements.

In case of uncertainty, follow the python style guides as much as
possible. The relevant documents are:

	PEP0008 - Style Guide for Python Code [http://www.python.org/dev/peps/pep-0008/]

	PEP0257 - Docstring Conventions [http://www.python.org/dev/peps/pep-0257/]

For documenting CGAT code, we follow the conventions for documenting
python code:

	Python Developer’s guide [http://docs.python.org/devguide/documenting.html]

In terms of writing scripts, we follow the following conventions:

	Each script should define the -h and --help options to
give command line help usage.

	For tabular output, scripts should output tsv formatted
tables. In these tables, records are separated by new-line
characters and fields by tab characters. Lines with comments are started
by the # character and are ignored. The first uncommented line
should contain the column headers. For example:

This is a comment
gene_id length
gene1 1000
gene2 2000
Another comment

	Scripts should follow the
unix philosophy [http://en.wikipedia.org/wiki/Unix_philosophy].
They should concentrate on one task and do it well. Ideally,
the major input and output can be read from and written to standard
input and standard output, respectively.

	The names of scripts should be meaningful. Most of our scripts
perform data transformation of one kind of another, these are
often called a2b.py. The distinctions can be subtle.
Examples are:

	<no title>

	Input is gtf, output is gtf. This script
manipulates gene sets (filtering, merging, ...).

	<no title>

	Input is gtf, output is gff. This script
takes gene sets and changes the hierarchical description
within a gtf file to the flat description of features
in a gff file. For example, this script can define
gene territories, regulatory domains or genomic annotations
based on a gene set.

	<no title>

	Input is bed, output is gff. As both
formats describe intervals in the genome, this script
basically does a conversion between the two formats.

Quite a few scripts contain the 2table or 2stats. These
compute, respectively, properties or summary statistics for
entries in a file. For example:

	<no title>

	Input is gtf. For each gene or transcript, compute
selected properties. If there are 10,000 genes in the input,
the output table will contain 10,000 rows.

	<no title>

	Input is gff. Compute summary statistics across
all features in the file. Here, aggregate sizes or similar
by feature type or name per chromosome. No matter if there
are 10,000 or 100,000 interval is the input, the output
will be have the same number of rows.

Where to put code

Different parts of the code base go into separate directories.

	Scripts

	Scripts are python code that contains a main() function and
are intended to be executed. Scripts go into the directory
/scripts

	Modules

	Modules contain supporting code and are imported by scripts or
other modules. Modules go into the directory /CGAT.

	Pipelines

	Pipeline scripts and modules go into the directory /CGATPipelines.

Pipelines

All components of a pipeline should go into the CGATPipelines
directory. The basic layout of a pipeline is:

CGATPipelines/pipeline_example.py
 /PipelineExample.py
 /PipelineExample.R
 /pipeline_example/pipeline.ini
 /conf.py
 /sphinxreport.ini

	pipeline_example.py

	The main pipeline code. Pipelines start with the word pipeline
and follow the conventions for script names, all lower case with
underscores separating words.

	pipeline_example/pipeline.ini

	Default values for pipeline configuration values.

	pipeline_example/conf.py

	Configuration script for sphinxreport.

	pipeline_example/sphinxreport.ini

	Configuration script for sphinxreport.

	pipeline_docs/pipeline_example

	Sphinxreport for pipeline.

	PipelineExample.py

	Python utility methods and classes specific to this pipeline. Once
methods and classes are shared between pipelines, consider moving
them to a separate module.

	PipelineExample.R

	R utility functions specific to this pipeline.

	Make sure that the pipeline.ini file exists and contains example/default
values with annotation.

	Make sure that the pipeline can be imported from any directory,
especially those not containing any data files or configuration
files. This is important for the documentation of the pipeline
to be built.

Other guidelines

	Only add source code and required data to the repository. Do
not add .pyc files, backup files created by your editor or other
files.

	In order to build documentation, each script, module and pipeline needs to
be importable. Thus, make sure that when your pipeline depends on
specific files, it does not fail when imported but not executed.

Documentation

Writing doc-strings

Functions should be documented through their doc-string using
restructured text. For example:

def computeValue(name, method, accuracy=2):

 :param name: The name to use.
 :type name: str.
 :param method: method to use.
 :type state: choice of ('empirical', 'parametric')
 :param accuracy:
 :type accuracy: integer
 :returns: int -- the value
 :raises: AttributeError, KeyError

Writing documentation for scripts

Please follow the example in <no title> for
documenting scripts. In addition, please pay attention to the following:

	Declare input data types for genomic data sets in optparse using
the metavar keyword. For example:

parser.add_option("--extra-intervals", dest = "extra_intervals",
 metavar="bed", help = "...")

Setting the type permits the script to be integrated into workflow
sytemns such as galaxy [https://main.g2.bx.psu.edu/].

	Please provide a meaningful example in the command line help.

	Be verbose. Something that is not documented within a script
will not be used.

	Add meaningful tags to your scripts (:Tags:) so that they can be grouped into
categories. Please choose from the following controlled
vocabulary. If needed, additional terms can be added to this list.

	Broad Themes

	Genomics

	NGS

	MultipleAlignment

	GenomeAlignment

	Intervals

	Genesets

	Sequences

	Variants

	Protein

	Formats

	BAM

	BED

	GFF

	GTF

	FASTA

	FASTQ

	WIGGLE

	PSL

	CHAIN

	Actions

	Summary - summarizing entities within a file, such as
counting the number of intervals within a file, etc.

	Annotation - annotating individual entities within a file,
such as adding length, composition, etc. to intervals.

	Comparison - comparing the same type of entities, such as
overlapping to sets of intervals.

	Conversion - converting between different formats for the
similar types of objects (Intervals in gff/bed format).

	Transformation - transforming one entity into another, such
as transforming intervals into sequences.

	Manipulation - changing entities within a file, such as
filtering sequences.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

Documentation

Overview

CGAT scripts and modules use sphinx [http://sphinx-doc.org/] for documentation. The philosophy
is to maintain documentation and code together. Thus, most
documentation will be kept inside the actual scripts and modules,
supported by overview documents explaining usage and higher level
concepts.

Building the documentation

CGAT’s documentation lives in the doc directory of the
repository. To build the documentation, enter the doc
directory and type:

make html

The output will be in the directory _build/html.

Note

Each script, module and pipeline needs to be importable,
i.e, the following must work:

python -c "import pipeline_mapping"

Especially in pipelines some care is necessary to avoid failing
with an error if no input or configuration files are present.

Writing documentation

sphinx [http://sphinx-doc.org/] documentation is written in Restructured Text [http://docutils.sourceforge.net/rst.html]. A useful
primer is here [http://sphinx-doc.org/rest.html].

Some specifics for the CGAT code base are:

	Refering to a separate script can be done using the :doc:
directive, for example:

:doc:`scripts/bed2summary`

Note that the path relative to the current directory needs to
be supplied.

	Glossary terms (:term:) are defined in
glossary.rst.

Adding documentation

In order to add a new script, module or pipeline to the documentation documement,
perform the following steps.

Here, we will be adding the script bed2summary.py to
the documentation.

	Create a file doc/scripts/bed2summary.rst with the
following contents:

.. automodule:: bed2summary

.. program-output:: python ../scripts/bed2summary.py --help

This will build the documentation within the bed2summary script
and add the command line help to the document.

	Add an entry to doc/scripts.rst. For example:

.. toctree::

 scripts/bed2summary

Please add your script to the toctree of an existing group.

	For scripts that are part of the CGAT code collection, also add an
entry into doc/CGATReference.rst.

Adding a module or pipeline is similar to adding a script, except that:

	the .rst file should be in doc/modules or
doc/pipelines, respectively.

	The entry needs to be added to modules.rst or
CGATPipelines.rst, respectively.

	no program-output is necessary.

Requisites

Building the documentation requires the following components:

	sphinx [http://sphinx-doc.org/]

	The documenation building system.

	sphinxcontrib-programoutput [https://pypi.python.org/pypi/sphinxcontrib-programoutput]

	Adding command line output to documenation.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

Release notes

The CGAT code is currently unreleased. It is available through
repository access only.

Contributions

We included publicly and freely available code into the tool
collection for convenience.

	IGV.py was written by Brent Pedersen.

	SVGdraw.py was written by ...

	The NCL module draws from code written by ...

	list_overlap.py

	Iterators.py

Contributors

Andreas Heger
Antonio Berlanga-Taylor
Martin Dienstbier
Nicholas Ilott
Jethro Johnson
Katherine Fawcett
Stephen Sansom
David Sims
Ian Sudbery
Hu Xiaoming

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	CGAT documentation

Importing CGAT scripts into galaxy

General Preparation

Add /ifs/devel/cgat to PYTHONPATH [http://docs.python.org/2.7/using/cmdline.html#envvar-PYTHONPATH].

Make sure that extensions have been built:

python setup.py develop --multi-version

The following directories are important:

	galaxy-dist

	Location of the galaxy distribution

	cgat-xml

	CGAT directory within the galaxy distribution. Create by typing:

mkdir <galaxy-dist>/tools/cgat

	cgat-scripts

	The CGAT scripts directory.

Adding a script manually

The following instructions describe the steps necessary to add a cgat
script to galaxy.

For example, we want to publish the bam2stats.py
script. First, create a file in <galaxy-dist>/tools/cgat called
bam2stats.xml with the following contents:

<tool id="bam2stats.py" name="Compute Stats from BAM file">
 <description>Compute stats for a bam file</description>
 <command
 interpreter="python">/ifs/devel/cgat/scripts/bam2stats.py -v 0 < $input > $output
 </command>
 <inputs>
 <param format="bam" name="input" type="data" label="Source file"/>
 </inputs>
 <outputs>
 <data format="tabular" name="output" />
 </outputs>
 <help>
 Compute statistics for a bam file.
 </help>
</tool>

Add an entry to tool_conf.xml for the script:

<section name="CGAT Tools" id="cgat_tools">
 <tool file="cgat/bam2stats.xml" />
</section>

After restarting galaxy, the bam2stats command should now be
visible in the CGAT section.

Automatic conversion of scripts

The CGAT tool collection contains a script called <no title> that can create
and xml file for inclusion into galaxy. To create a wrapper for
<no title>, run:

python <cgat-scripts>cgat2rdf.py --format=galaxy <cgat-scripts>bam2stats.py > <cgat-xml>bam2stats.xml

As before, add an entry to tool_conf.xml for the script.

For automatted conversion, a few rules need to be followed (see below).

Writing galaxy compatible scripts

CGAT scripts have generally a call interface that is compatible with
galaxy and can thus be easily integrated. However, to make automatic
conversion as easy as possible, conforming to a few coding conventions
help.

	Assign a metavar type to command line options of genomic file
formats. For example:

parser.add_option("-b", "--bam-file", dest="bam_files", type="string", metavar="bam",
 help="filename with read mapping"
 " information. Multiple files can be "
 " submitted in a comma-separated list")

	Use Experiment.OptionParser instead of optparse.OptionParser. The
former has some extensions that make creating galaxy xml files
easier. In particular, Experiment.OptionParser permits supplying
a list of ‘,’-separated values to options that accept multiple
values.

	Follow the CGAT script naming convention. If possible, scripts
should be named <format_in>2<format_out>.py. Formats can
be mapped to other types in <no title>. For example,
stats and table are both mapped to the format tabular.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	CGAT documentation

File formats

	yaml

	Language to serialize objects. Used in the CGAT testing
framework. (YAML [http://en.wikipedia.org/wiki/YAML]).

	bam

	Format to store genomic alignments in a compressed format.
(BAM [http://samtools.sourceforge.net/]).

	bed

	File containing genomic intervals.
(BED [https://genome.ucsc.edu/FAQ/FAQformat.html#format1]).

	vcf

	Variant call format [http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41].

	gtf

	General transfer format [http://www.ensembl.org/info/website/upload/gff.html].
Format to store genes and transcripts.

	gff

	General feature format [http://www.ensembl.org/info/website/upload/gff.html].

	bigwig

	Compressed format for displaying numerical values across
genomic ranges (BIGWIG [https://genome.ucsc.edu/goldenPath/help/bigWig.html]).

	fasta

	Sequence format.

	wiggle

	Format for displaying numerical values across genomic
ranges (Wiggle [https://genome.ucsc.edu/goldenPath/help/wiggle.html]).

	psl

	Genomic alignment format. The format is described in detail
(PSL [https://genome.ucsc.edu/FAQ/FAQformat.html#format2].

	sam

	Format to store genomic alignments
(SAM [http://samtools.sourceforge.net/]).

	gdl

	gdl

	tsv

	Tab separated values. In these tables, records are separated by new-line
characters and fields by tab characters. Lines with comments are started
by the # character and are ignored. The first uncommented line
should contain the column headers. For example:

This is a comment
gene_id length
gene1 1000
gene2 2000
Another comment

	svg

	pass

	edge list

	pass

	fastq

	Sequence format containing quality scores, more background is
here [http://en.wikipedia.org/wiki/FASTQ_format]

	sra

	sra

	axt

	axt

	maf

	maf

	rdf

	Resource description framework [http://en.wikipedia.org/wiki/Resource_Description_Framework]

Other terms

	test directory

	Directory that contains the test.yaml, input and
reference files for testing scripts.

	experiment

	experiment

	replicate

	replicate

	graph

	graph

	track

	track

	graph

	graph

	submit host

	pass

	execution host

	pass

	edge list

	pass

	task

	pass

	sphinxreport

	sphinxreport

	query

	pass

	target

	pass

	code directory

	pass

	go

	pass

	goslim

	pass

	fastq

	pass

	tss

	Transcription start site

	production pipeline

	A pipeline that performs common tasks on a certain type of
data. The idea of a production pipeline is to provide common
preprocessing of data and a first look. A project
pipeline might then take data from one or more
production pipeline to glean biological insight.

	project pipeline

	A pipeline that is project specific. Usually code is developed
first inside a project pipeline. When it becomes generally
useful, it may be refactored into a production pipeline.

	stdin

	Unix standard input. Most CGAT tools read data from stdin.

	stdout

	Unix standard output. Most CGAT tools output data to stdout.

	stderr

	Unix standard error. This is where errors go.

	loglevel

	Verbosity of logging information. The logging level can be
determined by the --verbose option. A
level of 0 means no logging output, while 1 is information
messages only, while 2 outputs also debugging information.

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	CGAT documentation

 Python Module Index

 a |
 b |
 c |
 d |
 e |
 f |
 g |
 h |
 i |
 l |
 m |
 o |
 p |
 r |
 s |
 t |
 v |
 w

 			

 		
 a	

 	
 	
 AGP	

 	
 	
 AString	

 			

 		
 b	

 	
 	
 BlastAlignments	

 	
 	
 BlatTest	

 			

 		
 c	

 	
 	
 CBioPortal	

 	
 	
 cgat_html_add_toc	

 	
 	
 Cluster	

 	
 	
 CorrespondenceAnalysis	

 	
 	
 CSV	

 	
 	
 CSV2DB	

 			

 		
 d	

 	
 	
 Database	

 			

 		
 e	

 	
 	
 Exons	

 	
 	
 Experiment	

 	
 	
 ExternalList	

 			

 		
 f	

 	
 	
 Fasta	

 	
 	
 FastaIterator	

 			

 		
 g	

 	
 	
 GDLDraw	

 	
 	
 GenomicIO	

 	
 	
 Glam2	

 	
 	
 Glam2Scan	

 	
 	
 GraphTools	

 			

 		
 h	

 	
 	
 Histogram	

 	
 	
 Histogram2D	

 			

 		
 i	

 	
 	
 IGV	

 	
 	
 Intervalls	

 	
 	
 IntervallsWeighted	

 	
 	
 Intervals	

 	
 	
 IOTools	

 	
 	
 Iterators	

 			

 		
 l	

 	
 	
 Logfile	

 			

 		
 m	

 	
 	
 Mali	

 	
 	
 mali_phylip2fasta	

 	
 	
 MaliIO	

 	
 	
 Maq	

 	
 	
 MAST	

 	
 	
 MatlabTools	

 			

 		
 o	

 	
 	
 Orthologs	

 			

 		
 p	

 	
 	
 PamMatrices	

 	
 	
 pipeline_quickstart	

 	
 	
 PipelineTracks	

 	
 	
 ProfileLibrary	

 	
 	
 ProfileLibraryCompass	

 	
 	
 ProgressBar	

 			

 		
 r	

 	
 	
 Regions	

 	
 	
 RLE	

 			

 		
 s	

 	
 	
 SaryFasta	

 	
 	
 SetTools	

 	
 	
 Sockets	

 	
 	
 SuffixArray	

 	
 	
 SVGdraw	

 			

 		
 t	

 	
 	
 Tophat	

 			

 		
 v	

 	
 	
 VCF	

 			

 		
 w	

 	
 	
 WrapperAdaptiveCAI	

 	
 	
 WrapperBl2Seq	

 	
 	
 WrapperENC	

 	
 	
 WrapperMACS	

 	
 	
 WrapperMuscle	

 	
 	
 WrapperZinba	

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	CGAT documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Y
 | Z

A

 	

 	Accumulate() (in module Histogram)

 	Add() (in module Histogram)

 	add_option() (Experiment.OptionParser method)

 	addAnnotation() (Mali.SequenceCollection method)

 	AddComplementIntervalls() (in module Intervalls)

 	

 	(in module IntervallsWeighted)

 	addComplementIntervals() (in module Intervals)

 	addElement() (SVGdraw.animate method)

 	

 	(SVGdraw.SVGelement method)

 	(SVGdraw.animateColor method)

 	(SVGdraw.animateMotion method)

 	(SVGdraw.animateTransform method)

 	(SVGdraw.circle method)

 	(SVGdraw.cursor method)

 	(SVGdraw.defs method)

 	(SVGdraw.description method)

 	(SVGdraw.ellipse method)

 	(SVGdraw.group method)

 	(SVGdraw.image method)

 	(SVGdraw.line method)

 	(SVGdraw.lineargradient method)

 	(SVGdraw.link method)

 	(SVGdraw.marker method)

 	(SVGdraw.path method)

 	(SVGdraw.pattern method)

 	(SVGdraw.point method)

 	(SVGdraw.polygon method)

 	(SVGdraw.polyline method)

 	(SVGdraw.radialgradient method)

 	(SVGdraw.rect method)

 	(SVGdraw.script method)

 	(SVGdraw.set method)

 	(SVGdraw.stop method)

 	(SVGdraw.style method)

 	(SVGdraw.svg method)

 	(SVGdraw.switch method)

 	(SVGdraw.symbol method)

 	(SVGdraw.text method)

 	(SVGdraw.textpath method)

 	(SVGdraw.title method)

 	(SVGdraw.tref method)

 	(SVGdraw.tspan method)

 	(SVGdraw.use method)

 	(SVGdraw.view method)

 	addEntry() (Mali.SequenceCollection method)

 	AddRelativeAndCumulativeDistributions() (in module Histogram)

 	AGP (module)

 	Alignment2Exons() (in module Exons)

 	animate (class in SVGdraw)

 	

 	animateColor (class in SVGdraw)

 	animateMotion (class in SVGdraw)

 	animateTransform (class in SVGdraw)

 	AppendCommaOption (class in Experiment)

 	apply() (Mali.SequenceCollection method)

 	asAggregate() (PipelineTracks.Sample method)

 	

 	(PipelineTracks.Sample3 method)

 	asFile() (PipelineTracks.Sample method)

 	

 	(PipelineTracks.Sample3 method)

 	asR() (PipelineTracks.Sample method)

 	

 	(PipelineTracks.Sample3 method)

 	asTable() (Experiment.Counter method)

 	

 	(PipelineTracks.Sample method)

 	(PipelineTracks.Sample3 method)

 	AString (class in AString)

 	

 	(module)

 	axt

B

 	

 	bam

 	bed

 	benchmark() (in module Experiment)

 	benchmarkRandomFragment() (in module SaryFasta)

 	bezier() (SVGdraw.pathdata method)

 	

 	bigwig

 	BlastAlignments (module)

 	BlatTest (module)

 	buildColumnMap() (Mali.SequenceCollection method)

C

 	

 	cachedfunction (in module Experiment)

 	cachedmethod() (in module Experiment)

 	Calculate() (in module Histogram)

 	

 	(in module Histogram2D)

 	CalculateConst() (in module Histogram)

 	CalculateFromTable() (in module Histogram)

 	CalculateOverlap() (in module Intervalls)

 	calculateOverlap() (in module Intervals)

 	CalculateStats() (in module Exons)

 	CBioPortal (module)

 	CDGSError

 	cgat_html_add_toc (module)

 	check_values() (Experiment.OptionParser method)

 	CheckContainedAinB() (in module Exons)

 	CheckCoverage() (in module Exons)

 	CheckCoverageAinB() (in module Exons)

 	checkLength() (Mali.SequenceCollection method)

 	CheckOverlap() (in module Exons)

 	circle (class in SVGdraw)

 	clear() (IOTools.nested_dict method)

 	clipByAnnotation() (Mali.SequenceCollection method)

 	clone() (PipelineTracks.Sample method)

 	

 	(PipelineTracks.Sample3 method)

 	close() (IOTools.FilePool method)

 	

 	(IOTools.FilePoolMemory method)

 	closepath() (SVGdraw.pathdata method)

 	Cluster (module)

 	ClusterByExonIdentity() (in module Exons)

 	ClusterByExonOverlap() (in module Exons)

 	ClusterError

 	ClusterOrthologsByGenes() (in module Orthologs)

 	code (Tophat.Tracking attribute)

 	code directory

 	combinations() (in module SetTools)

 	Combine() (in module Histogram)

 	combine() (in module Intervals)

 	combineAtDistance() (in module Intervals)

 	CombineIntervallsDistance() (in module Intervalls)

 	

 	(in module IntervallsWeighted)

 	

 	CombineIntervallsLarge() (in module Intervalls)

 	

 	(in module IntervallsWeighted)

 	CombineIntervallsOverlap() (in module Intervalls)

 	

 	(in module IntervallsWeighted)

 	CommentStripper (class in CSV)

 	CompareGeneStructures() (in module Exons)

 	CompareSets() (in module SetTools)

 	complement() (in module Intervals)

 	ComplementIntervalls() (in module Intervalls)

 	

 	(in module IntervallsWeighted)

 	compress() (in module RLE)

 	compressAlignment() (in module MaliIO)

 	contig (Tophat.Locus attribute)

 	

 	(WrapperMACS.Macs2Peak attribute)

 	(WrapperMACS.MacsPeak attribute)

 	(WrapperZinba.ZinbaPeak attribute)

 	Convert() (in module Histogram)

 	convertAlignlib2Mali() (in module Mali)

 	convertCoordinates() (BlatTest.Match method)

 	ConvertDictionary() (in module CSV)

 	convertGaps() (in module MaliIO)

 	convertMali2Alignlib() (in module Mali)

 	convertValue() (in module IOTools)

 	copy() (IOTools.nested_dict method)

 	copyAnnotations() (Mali.SequenceCollection method)

 	CorrespondenceAnalysis (module)

 	count() (in module FastaIterator)

 	Count() (in module Histogram)

 	count() (Logfile.RuntimeInformation method)

 	

 	(Tophat.Locus method)

 	(Tophat.Tracking method)

 	(WrapperMACS.Macs2Peak method)

 	(WrapperMACS.MacsPeak method)

 	(WrapperZinba.ZinbaPeak method)

 	Counter (class in Experiment)

 	CountMissedBoundaries() (in module Exons)

 	CountNumExons() (in module Exons)

 	createDatabase() (in module SaryFasta)

 	critical() (in module Experiment)

 	cstime (Logfile.RuntimeInformation attribute)

 	CSV (module)

 	CSV2DB (module)

 	Cumulate() (in module Histogram)

 	cumulate() (in module Histogram)

 	cursor (class in SVGdraw)

 	cutime (Logfile.RuntimeInformation attribute)

D

 	

 	Database (module)

 	debug() (in module Experiment)

 	decode() (in module RLE)

 	default_factory (IOTools.nested_dict attribute)

 	defs (class in SVGdraw)

 	deleteFiles() (IOTools.FilePool method)

 	

 	(IOTools.FilePoolMemory method)

 	DeleteSmallIntervalls() (in module Intervalls)

 	

 	(in module IntervallsWeighted)

 	

 	DeleteSmallIntervals() (in module Intervals)

 	description (class in SVGdraw)

 	destroy() (Experiment.OptionParser method)

 	DictReader (class in CSV)

 	DictReaderLarge (class in CSV)

 	disable_interspersed_args() (Experiment.OptionParser method)

 	drawing (class in SVGdraw)

E

 	

 	edge list, [1]

 	ellarc() (SVGdraw.pathdata method)

 	ellipse (class in SVGdraw)

 	enable_interspersed_args() (Experiment.OptionParser method)

 	encode() (in module RLE)

 	end (Tophat.Locus attribute)

 	

 	(WrapperMACS.Macs2Peak attribute)

 	(WrapperMACS.MacsPeak attribute)

 	end_date (Logfile.RuntimeInformation attribute)

 	
 environment variable

 	

 	PATH

 	PYTHONPATH

 	SGE_TASK_FIRST

 	SGE_TASK_ID

 	SGE_TASK_LAST

 	SGE_TASK_STEPSIZE

 	Error, [1], [2], [3], [4]

 	

 	error() (Experiment.OptionParser method)

 	

 	(in module Experiment)

 	executewait() (in module CSV2DB)

 	

 	(in module Database)

 	execution host

 	Exon (class in Exons)

 	Exons (module)

 	Exons2Alignment() (in module Exons)

 	experiment

 	Experiment (module)

 	ExternalList (module)

F

 	

 	factory (PipelineTracks.Tracks attribute)

 	fasta

 	Fasta (module)

 	FastaIterator (class in FastaIterator)

 	

 	(module)

 	fastq, [1]

 	fdr (WrapperMACS.Macs2Peak attribute)

 	

 	(WrapperMACS.MacsPeak attribute)

 	(WrapperZinba.ZinbaPeak attribute)

 	FilePool (class in IOTools)

 	FilePoolMemory (class in IOTools)

 	Fill() (in module Histogram)

 	fill() (in module Histogram)

 	fillHistograms() (in module Histogram)

 	filter() (Mali.SequenceCollection method)

 	

 	FilterBDGP() (in module Orthologs)

 	flatten() (in module IOTools)

 	fold (WrapperMACS.Macs2Peak attribute)

 	

 	(WrapperMACS.MacsPeak attribute)

 	frequencies2logodds() (in module MAST)

 	fromArray() (in module Intervals)

 	fromFile() (PipelineTracks.Sample method)

 	

 	(PipelineTracks.Sample3 method)

 	fromkeys() (IOTools.nested_dict static method)

 	fromMap() (BlatTest.Match method)

 	fromMaq() (BlatTest.Match method)

 	fromPair() (BlatTest.Match method)

 	fromR() (PipelineTracks.Sample method)

 	

 	(PipelineTracks.Sample3 method)

 	fromTable() (PipelineTracks.Sample method)

 	

 	(PipelineTracks.Sample3 method)

G

 	

 	gdl

 	GDLDraw (module)

 	GenomicIO (module)

 	get() (IOTools.nested_dict method)

 	getAlphabet() (Mali.SequenceCollection method)

 	getAnnotation() (Mali.SequenceCollection method)

 	getBlocks() (BlatTest.Match method)

 	GetClone() (BlastAlignments.Map method)

 	getCodonSequence() (in module MaliIO)

 	getColumnNames() (in module Database)

 	getColumns() (Mali.SequenceCollection method)

 	getConsensus() (Mali.SequenceCollection method)

 	getConverter() (in module GenomicIO)

 	GetDegeneracy() (in module Orthologs)

 	GetExonBoundariesFromTable() (in module Exons)

 	GetExonsRange() (in module Exons)

 	getFilename() (IOTools.FilePool method)

 	

 	(IOTools.FilePoolMemory method)

 	getFooter() (in module Experiment)

 	getFrameColumnsForMaster() (in module MaliIO)

 	getFrameColumnsForMasterPattern() (in module MaliIO)

 	GetGenes() (in module Orthologs)

 	GetGenomeLengths() (in module Exons)

 	getHeader() (in module Experiment)

 	getHID() (in module SaryFasta)

 	GetIndices() (in module CorrespondenceAnalysis)

 	getIntersections() (in module Intervals)

 	getInvertedDictionary() (in module IOTools)

 	getLastLine() (in module IOTools)

 	getLength() (in module Intervals)

 	

 	(Mali.SequenceCollection method)

 	

 	GetMapColumn2Type() (in module CSV)

 	getMapFromMali() (in module MaliIO)

 	getMapQuery2Target() (BlatTest.Match method)

 	getMapTarget2Query() (BlatTest.Match method)

 	getNumLines() (in module IOTools)

 	getOutputFile() (in module Experiment)

 	getOverlaps() (Regions.RegionFilter method)

 	getParams() (in module Experiment)

 	GetPeptideLengths() (in module Exons)

 	getPercentIdentity() (in module MaliIO)

 	GetPermutatedMatrix() (in module CorrespondenceAnalysis)

 	getResidueNumber() (Mali.SequenceCollection method)

 	getSamplesInTrack() (in module PipelineTracks)

 	getSequence() (in module GenomicIO)

 	getSubset() (in module MaliIO)

 	getTracks() (PipelineTracks.Tracks method)

 	getWidth() (Mali.SequenceCollection method)

 	gff

 	Glam2 (module)

 	Glam2Scan (module)

 	go

 	goslim

 	graph, [1]

 	GraphTools (module)

 	group (class in SVGdraw)

 	group_by_distance() (in module Iterators)

 	GroupTable() (in module CSV)

 	gtf

H

 	

 	has_finished (Logfile.RuntimeInformation attribute)

 	has_key() (IOTools.nested_dict method)

 	height (WrapperZinba.ZinbaPeak attribute)

 	Histogram (module)

 	

 	histogram() (in module Histogram)

 	Histogram2D (module)

 	hline() (SVGdraw.pathdata method)

 	host (Logfile.RuntimeInformation attribute)

I

 	

 	IGV (class in IGV)

 	

 	(module)

 	image (class in SVGdraw)

 	index() (Logfile.RuntimeInformation method)

 	

 	(Tophat.Locus method)

 	(Tophat.Tracking method)

 	(WrapperMACS.Macs2Peak method)

 	(WrapperMACS.MacsPeak method)

 	(WrapperZinba.ZinbaPeak method)

 	index_exists() (in module GenomicIO)

 	index_file() (in module GenomicIO)

 	info() (in module Experiment)

 	InputError

 	insertColumns() (Mali.SequenceCollection method)

 	intersect() (in module Intervals)

 	Intervalls (module)

 	IntervallsWeighted (module)

 	Intervals (module)

 	InvertGenomicCoordinates() (Exons.Exon method)

 	IOTools (module)

 	isEmpty() (in module IOTools)

 	items() (IOTools.nested_dict method)

 	iterate() (in module IOTools)

 	iterate_locus() (in module Tophat)

 	

 	iterate_tabular() (in module IOTools)

 	iterate_together() (in module FastaIterator)

 	iterate_tracking() (in module Tophat)

 	iterateMacs2Peaks() (in module WrapperMACS)

 	iterateMacsPeaks() (in module WrapperMACS)

 	iteratePeaks() (in module WrapperZinba)

 	iterator() (in module BlatTest)

 	

 	(in module Maq)

 	iterator_links() (in module BlastAlignments)

 	iterator_per_query() (in module BlatTest)

 	iterator_pslx() (in module BlatTest)

 	iterator_query_overlap() (in module BlatTest)

 	iterator_target_overlap() (in module BlatTest)

 	iterator_test() (in module BlatTest)

 	Iterators (module)

 	iterflattened() (IOTools.nested_dict method)

 	iteritems() (IOTools.nested_dict method)

 	iterkeys() (IOTools.nested_dict method)

 	itervalues() (IOTools.nested_dict method)

J

 	

 	jobid (Logfile.RuntimeInformation attribute)

 	

 	joined_iterator() (in module Intervals)

K

 	

 	keys() (IOTools.nested_dict method)

L

 	

 	length (WrapperMACS.Macs2Peak attribute)

 	

 	(WrapperMACS.MacsPeak attribute)

 	line (class in SVGdraw)

 	line() (SVGdraw.pathdata method)

 	lineargradient (class in SVGdraw)

 	link (class in SVGdraw)

 	loadFromDirectory() (PipelineTracks.Tracks method)

 	Locus (class in Tophat)

 	

 	locus_id (Tophat.Locus attribute)

 	

 	(Tophat.Tracking attribute)

 	log() (in module Experiment)

 	Logfile (module)

 	LogFileDataLines (class in Logfile)

 	loglevel

 	lower() (AString.AString method)

 	

 	(Mali.SequenceCollection method)

 	lowerCase() (Mali.SequenceCollection method)

M

 	

 	Macs2Peak (class in WrapperMACS)

 	MacsPeak (class in WrapperMACS)

 	maf

 	MakeListComprehensionFunction() (in module SetTools)

 	Mali (module)

 	mali_phylip2fasta (module)

 	MaliIO (module)

 	Map (class in BlastAlignments)

 	mapColumns() (Mali.SequenceCollection method)

 	MapExons() (in module Exons)

 	mapIdentifiers() (Mali.SequenceCollection method)

 	MapRange() (BlastAlignments.Map method)

 	Maq (module)

 	

 	markCodons() (Mali.SequenceCollection method)

 	marker (class in SVGdraw)

 	markTransitions() (Mali.SequenceCollection method)

 	maskColumn() (Mali.SequenceCollection method)

 	maskColumns() (Mali.SequenceCollection method)

 	MAST (module)

 	Match (class in BlatTest)

 	

 	(class in Glam2Scan)

 	(class in MAST)

 	(class in Maq)

 	MatchExons() (in module Exons)

 	MatlabTools (module)

 	median (WrapperZinba.ZinbaPeak attribute)

 	Merge() (Exons.Exon method)

 	move() (SVGdraw.pathdata method)

N

 	

 	name (WrapperMACS.Macs2Peak attribute)

 	nested_dict (class in IOTools)

 	

 	normalize() (in module Histogram)

O

 	

 	openFile() (in module Experiment)

 	

 	(IOTools.FilePool method)

 	(IOTools.FilePoolMemory method)

 	(in module IOTools)

 	openOutputFile() (in module Experiment)

 	OptionParser (class in Experiment)

 	

 	options (Logfile.RuntimeInformation attribute)

 	Orthologs (module)

P

 	

 	PamMatrices (module)

 	PARAM_CPC_UNIREF

 	PARAM_DATABASE

 	PARAM_FILE_ALIGNMENTS

 	PARAM_FILE_REPEATS

 	PARAM_FILE_REPEATS_GC

 	PARAM_FILE_REPEATS_RATES

 	PARAM_FILENAME_GO (PARAM_FILENAME_GOSLIM)

 	PARAM_FILENAME_TERRITORIES

 	parse() (in module Glam2)

 	

 	(in module Glam2Scan)

 	(in module MAST)

 	parse_args() (Experiment.OptionParser method)

 	parseTranscriptComparison() (in module Tophat)

 	ParsingError, [1], [2]

 	PATH

 	path (class in SVGdraw)

 	pathdata (class in SVGdraw)

 	pattern (class in SVGdraw)

 	pileup (WrapperMACS.Macs2Peak attribute)

 	pipeline_quickstart (module)

 	PipelineTracks (module)

 	point (class in SVGdraw)

 	polygon (class in SVGdraw)

 	polyline (class in SVGdraw)

 	

 	pop() (IOTools.nested_dict method)

 	popitem() (IOTools.nested_dict method)

 	posterior (WrapperZinba.ZinbaPeak attribute)

 	PostProcessExons() (in module Exons)

 	prettyFloat() (in module IOTools)

 	prettyPercent() (in module IOTools)

 	prettyString() (in module IOTools)

 	Print() (in module Histogram)

 	

 	(in module Histogram2D)

 	print_help() (Experiment.OptionParser method)

 	print_usage() (Experiment.OptionParser method)

 	print_version() (Experiment.OptionParser method)

 	PrintAscii() (in module Histogram)

 	production pipeline

 	ProfileLibrary (module)

 	ProfileLibraryCompass (module)

 	ProgressBar (class in ProgressBar)

 	

 	(module)

 	project pipeline

 	propagateMasks() (Mali.SequenceCollection method)

 	propagateTransitions() (Mali.SequenceCollection method)

 	prune() (in module Intervals)

 	psl

 	pvalue (WrapperMACS.Macs2Peak attribute)

 	

 	(WrapperMACS.MacsPeak attribute)

 	PYTHONPATH

Q

 	

 	qbezier() (SVGdraw.pathdata method)

 	query

 	

 	quoteRow() (in module CSV2DB)

R

 	

 	radialgradient (class in SVGdraw)

 	rdf

 	Read() (Exons.Exon method)

 	ReadBinarySparseMatrix() (in module MatlabTools)

 	ReadExonBoundaries() (in module Exons)

 	readFasta() (in module MaliIO)

 	readFromFile() (Mali.SequenceCollection method)

 	

 	(Regions.RegionFilter method)

 	ReadInterpretation() (in module Orthologs)

 	ReadList() (in module IOTools)

 	readList() (in module IOTools)

 	ReadMap() (in module BlastAlignments)

 	readMap() (in module IOTools)

 	ReadMap() (in module IOTools)

 	readMatrix() (in module IOTools)

 	ReadMatrix() (in module MatlabTools)

 	readMatrix() (in module MatlabTools)

 	readMultiMap() (in module IOTools)

 	ReadOrphans() (in module Orthologs)

 	readPicasso() (in module MaliIO)

 	readSequence() (in module IOTools)

 	ReadSparseMatrix() (in module MatlabTools)

 	ReadTable() (in module CSV)

 	readTable() (in module IOTools)

 	ReadTables() (in module CSV)

 	recount() (Mali.SequenceCollection method)

 	rect (class in SVGdraw)

 	ref_gene_id (Tophat.Tracking attribute)

 	ref_transcript_id (Tophat.Tracking attribute)

 	refined_end (WrapperZinba.ZinbaPeak attribute)

 	

 	refined_start (WrapperZinba.ZinbaPeak attribute)

 	RegionFilter (class in Regions)

 	Regions (module)

 	relbezier() (SVGdraw.pathdata method)

 	relellarc() (SVGdraw.pathdata method)

 	relhline() (SVGdraw.pathdata method)

 	relline() (SVGdraw.pathdata method)

 	relmove() (SVGdraw.pathdata method)

 	relqbezier() (SVGdraw.pathdata method)

 	relsmbezier() (SVGdraw.pathdata method)

 	relsmqbezier() (SVGdraw.pathdata method)

 	relvline() (SVGdraw.pathdata method)

 	removeEmptySequences() (Mali.SequenceCollection method)

 	removeEndGaps() (Mali.SequenceCollection method)

 	removeGappedColumns() (in module MaliIO)

 	removeGaps() (Mali.SequenceCollection method)

 	RemoveIntervallsContained() (in module Intervalls)

 	

 	(in module IntervallsWeighted)

 	RemoveIntervallsSpanning() (in module Intervalls)

 	

 	(in module IntervallsWeighted)

 	RemoveIntervalsContained() (in module Intervals)

 	RemoveIntervalsSpanning() (in module Intervals)

 	removePattern() (Mali.SequenceCollection method)

 	RemoveRedundantEntries() (in module Exons)

 	removeUnalignedEnds() (Mali.SequenceCollection method)

 	rename() (Mali.SequenceCollection method)

 	replicate

 	RLE (module)

 	run() (in module Experiment)

 	RuntimeError

 	RuntimeInformation (class in Logfile)

S

 	

 	sam

 	Sample (class in PipelineTracks)

 	sample() (in module Iterators)

 	Sample3 (class in PipelineTracks)

 	SaryFasta (module)

 	Scale() (in module Histogram)

 	script (class in SVGdraw)

 	

 	(Logfile.RuntimeInformation attribute)

 	SequenceCollection (class in Mali)

 	sequences2motif() (in module MAST)

 	set (class in SVGdraw)

 	setAnnotation() (Mali.SequenceCollection method)

 	setdefault() (IOTools.nested_dict method)

 	setDefault() (PipelineTracks.Sample class method)

 	

 	(PipelineTracks.Sample3 class method)

 	SetRankToPositionFlag() (in module Exons)

 	SetTools (module)

 	SGE_TASK_FIRST

 	SGE_TASK_ID

 	SGE_TASK_LAST

 	SGE_TASK_STEPSIZE

 	shiftAlignment() (Mali.SequenceCollection method)

 	ShortenIntervallsOverlap() (in module Intervalls)

 	

 	(in module IntervallsWeighted)

 	ShortenIntervalsOverlap() (in module Intervals)

 	shuffle() (Mali.SequenceCollection method)

 	smbezier() (SVGdraw.pathdata method)

 	SmoothWrap() (in module Histogram)

 	smqbezier() (SVGdraw.pathdata method)

 	Sockets (module)

 	

 	sort() (IGV.IGV method)

 	source directory

 	spannedtext (class in SVGdraw)

 	sphinxreport

 	splitFasta() (in module GenomicIO)

 	sra

 	start (Tophat.Locus attribute)

 	

 	(WrapperMACS.Macs2Peak attribute)

 	(WrapperMACS.MacsPeak attribute)

 	Start() (in module Experiment), [1]

 	start_date (Logfile.RuntimeInformation attribute)

 	stderr

 	stdin

 	stdout

 	stime (Logfile.RuntimeInformation attribute)

 	stop (class in SVGdraw)

 	Stop() (in module Experiment), [1]

 	str2val() (in module IOTools)

 	strand (Tophat.Locus attribute)

 	

 	(WrapperZinba.ZinbaPeak attribute)

 	style (class in SVGdraw)

 	submit host

 	SuffixArray (module)

 	summit (WrapperMACS.Macs2Peak attribute)

 	

 	(WrapperMACS.MacsPeak attribute)

 	(WrapperZinba.ZinbaPeak attribute)

 	svg

 	

 	(class in SVGdraw)

 	SVGdraw (module)

 	SVGelement (class in SVGdraw)

 	switch (class in SVGdraw)

 	switchTargetStrand() (BlatTest.Match method)

 	symbol (class in SVGdraw)

T

 	

 	tags (WrapperMACS.MacsPeak attribute)

 	takeColumns() (Mali.SequenceCollection method)

 	target

 	task

 	test directory

 	text (class in SVGdraw)

 	textpath (class in SVGdraw)

 	title (class in SVGdraw)

 	toLabels() (PipelineTracks.Sample method)

 	

 	(PipelineTracks.Sample3 method)

 	Tophat (module)

 	track

 	

 	Tracking (class in Tophat)

 	Tracks (class in PipelineTracks)

 	transcript_ids (Tophat.Locus attribute)

 	TranscriptInfo (in module Tophat)

 	transcripts (Tophat.Locus attribute)

 	

 	(Tophat.Tracking attribute)

 	transfrag_id (Tophat.Tracking attribute)

 	tref (class in SVGdraw)

 	truncate() (in module Intervals)

 	

 	(Mali.SequenceCollection method)

 	tspan (class in SVGdraw)

 	tss

 	tsv

U

 	

 	unionIntersectionMatrix() (in module SetTools)

 	unrefined_end (WrapperZinba.ZinbaPeak attribute)

 	unrefined_start (WrapperZinba.ZinbaPeak attribute)

 	update() (IOTools.nested_dict method)

 	UpdatePeptideCoordinates() (in module Exons)

 	

 	upper() (AString.AString method)

 	

 	(Mali.SequenceCollection method)

 	upperCase() (Mali.SequenceCollection method)

 	UsageError

 	use (class in SVGdraw)

 	utime (Logfile.RuntimeInformation attribute)

V

 	

 	val2str() (in module IOTools)

 	values() (IOTools.nested_dict method)

 	vcf

 	VCF (module)

 	verify() (in module SaryFasta)

 	

 	view (class in SVGdraw)

 	viewitems() (IOTools.nested_dict method)

 	viewkeys() (IOTools.nested_dict method)

 	viewvalues() (IOTools.nested_dict method)

 	vline() (SVGdraw.pathdata method)

W

 	

 	wall (Logfile.RuntimeInformation attribute)

 	warn() (in module Experiment)

 	warning() (in module Experiment)

 	which() (in module IOTools)

 	wiggle

 	working directory

 	WrapperAdaptiveCAI (module)

 	WrapperBl2Seq (module)

 	WrapperENC (module)

 	WrapperMACS (module)

 	WrapperMuscle (module)

 	WrapperZinba (module)

 	

 	Write() (in module Histogram)

 	writeClustalW() (in module MaliIO)

 	writeFasta() (in module MaliIO)

 	writeMast() (in module MAST)

 	writeMatrix() (in module IOTools)

 	WriteMatrix() (in module MatlabTools)

 	writeMatrix() (in module MatlabTools)

 	WriteMODELLER() (in module MaliIO)

 	writeSets() (in module SetTools)

 	writeTable() (in module IOTools)

 	writeToFile() (Mali.SequenceCollection method)

 	writeTomTom() (in module MAST)

Y

 	

 	yaml

Z

 	

 	ZinbaPeak (class in WrapperZinba)

 Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

 pipelinemodules/PipelineMapping.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/run.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelines/pipeline_promotors.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		CGAT Pipelines »

 		NGS Pipelines »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/mali_extract.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/fastqs2fasta.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

CGATInstallationOSX.html

 Navigation

 		
 index

 		
 modules |

 		CGAT documentation »

OS X installation

This section describes the installation process on OS X. The installation
below has been tested on a MacBook Pro running OS X 10.8.5.

Begin by installing homebrew [http://brew.sh/] by following these
instructions [http://hackercodex.com/guide/mac-osx-mountain-lion-10.8-configuration/]

Next, install various packages:

brew install mysql
brew install gfortran
brew install freetype
brew install Mercurial
brew install python --with-brewed-openssl

Install the R package from here [http://cran.r-project.org/bin/macosx/] and
bedtools [http://bedtools.readthedocs.org/en/latest/]:

wget http://bedtools.googlecode.com/files/BEDTools.v2.17.0.tar.gz
tar -xvzf http://bedtools.googlecode.com/files/BEDTools.v2.17.0.tar.gz
cd bedtools-2.17.0/
make
cp bin/* /usr/local/bin/

Next install and set up a virtual environment:

pip install virtualenv

CGAT depends on numerous other python packages not all of which
might install cleanly. Here, we give some more detailed instructions.
Generally we recommend when troubleshooting CGAT installation to do so
within a virtual environment. To create a clean environment, type:

virtualenv --no-site-packages cgat-python
source cgat-python/bin/activate

Now, download the list of required packages:

wget https://raw.github.com/CGATOxford/cgat/master/requires.txt

To install the required basic packages:

pip install -r requires.txt

Also, bx-python needs to be installed. The current version on pypi is
currently out of date, so to install, do:

pip install https://bitbucket.org/james_taylor/bx-python/get/tip.tar.bz2

If all of that works, installing the CGAT tools should now be
straight-forward:

pip install cgat

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/psl2table.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/maq2assembly.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/probeset2gene.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

_static/file.png

scripts/list_overlap.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/graph_filter_links_redundant.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/fasta2fasta.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/maf2psl.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/index2gff.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/go2plot.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/IndexedGenome.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

recipes/gat.html

 Navigation

 		
 index

 		
 modules |

 		CGAT documentation »

Testing for Functional enrichment

This tutorial demonstrates the usage of gat with a simple example -
where does a transcription factor bind in the genome?

This tutorial uses the SRF data set described in Valouev et
al. (2008) [http://www.ncbi.nlm.nih.gov/pubmed/19160518]. The data sets used in this tutorial are available at:

http://www.cgat.org/~andreas/sample_data/srf.hg19.bed.gz

This bed formatted file contains 556 high confidence peaks
from the analysis of Valouev et al. (2008) [http://www.ncbi.nlm.nih.gov/pubmed/19160518] mapped to human
chromosome hg19.

We want to find out, where these binding sites are located in the
genome. First let us download the genomic sequence for hg19 and
index it:

wget -qO- http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/chromFa.tar.gz
| cgat index_fasta --file-format=tar.gz hg19 -
> hg19.log

Next, we need to define where intronic and intergenic regions are
located in the genome. We do this by by obtaining the latest geneset
from ENSEMBL [http:://www.ensembl.org] and pushing it through a sequence of commands:

wget -qO- ftp://ftp.ensembl.org/pub/release-72/gtf/homo_sapiens/Homo_sapiens.GRCh37.72.gtf.gz
| gunzip
| awk '$2 == "protein_coding"'
| cgat gff2gff --genome-file=hg19 --sanitize=genome --skip-missing
| cgat gtf2gtf --sort=gene
| cgat gtf2gtf --merge-exons --with-utr
| cgat gtf2gtf --filter=longest-gene
| cgat gtf2gtf --sort=position
| cgat gtf2gff --genome-file=hg19 --flank=5000 --method=genome
| gzip
> annotations.hg19.gff.gz

The commands do the following.

		Reconcile the chromosome names in the gene set (ENSEMBL: 1,2,3)
with the UCSC convention (chr1,chr2,chr3):

| cgat gff2ff --genome-file=hg19 --sanitize=genome --skip-missing

		Sort the gene set by gene making sure that all exons within a gene
appear in a block:

| cgat gtf2gtf --merge-exons --with-utr

		Merge overlapping exons from alternative transcripts of the same gene:

| cgat gtf2gtf --merge-exons --with-utr

		Resolve nested genes. In nested genes a genomic region might be
both defined intronic and intergenic. Here, we select the longer
one:

| cgat gtf2gtf --filter=longest-gene

		Sort by genomic position:

| cgat gtf2gtf --sort=position

		Define intronic, intergenic and other gene set based annotations:

| cgat gtf2gff --genome-file=hg19 --flank=5000 --method=genome

The tool gff2stats

We can now use the file annotations.hg19.gff.gz to classify
individual peaks with the <no title> tool:

zcat srf.hg19.bed.gz
| cgat bed2table --genome-file=hg19 --counter=classify-chipseq --filename-gff=annotations.hg19.gff.gz
| gzip
> srf.hg19.tsv.gz

The table srf.hg19.tsv.gz contains a row for each interval in
the input file srf.hg19.bed.gz describing which genomic
features it overlaps and assigns it to a category such as introning,
intergenic, etc.. We can upload this file into a database or view in
excel to easily filter and summarize the data.

To get a more global view of where the transcription factor binds,
we make use of the gat [http://code.google.com/p/genomic-association-tester/] tool. Gat tests if two sets of genomic
features are overlapping more - or less - than expected by chance
through simulation. Note that gat [http://code.google.com/p/genomic-association-tester/] needs to be installed separately
(pip install gat).

For gat, we need the file with genomic annotations
(annotations.hg19.gff.gz) we created previously and a workspace - a
set of genomic regions that are accessible for simulation. Here, we
will use the full genome for simulation excluding regions that are
gaps as we do not expect to be able to detect transcription factor
binding sites in those in an NGS experiment. To get these regions, we
use the <no title> tool:

cat hg19.fasta
| cgat fasta2bed --method=ungapped --min-gap-size=100
| awk '$1 ~ /^chr/'
| cut -f 1,2,3
| gzip
> ungapped.hg19.bed.gz

Gat needs bed formatted input files, so let us quickly convert
annogations.hg19.gff.gz:

zcat annogations.hg19.gff.gz
| cgat gff2bed.py
| gzip
> annotations.bed.gz

We are now ready to run gat:

gat-run.py
 --ignore-segment-tracks
 --segments=srf.hg19.bed.gz
 --annotations=annotations.hg19.bed.gz
 --workspace=ungapped.hg19.bed.gz
 --num-samples=1000
 --log=gat.log
| gzip
> gat.out

The option –ignore-segment-tracks tells gat to ignore the fourth
column in the tracks file and assume that all intervals in
this file belong to the same track. If not given, each
interval would be treated separately.

The above statement finishes in a few seconds. With large interval
collections or many annotations, gat might take a while. It is thus
good practice to always save the output in a file. The option –log
tells gat to save information or warning messages into a separate log
file.

The first 11 columns of the output file are the most informative:

		track
		annotation
		observed
		expected
		CI95low
		CI95high
		stddev
		fold
		l2fold
		pvalue
		qvalue

		merged
		telomeric
		0
		69.7440
		0.0000
		200.0000
		59.6216
		0.0141
		-6.1445
		2.5100e-01
		3.9443e-01

		merged
		intergenic
		6200
		13909.1770
		12989.0000
		14800.0000
		570.3231
		0.4458
		-1.1656
		1.0000e-03
		2.2000e-03

		merged
		intronic
		8415
		11401.6660
		10440.0000
		12345.0000
		577.7517
		0.7381
		-0.4382
		1.0000e-03
		2.2000e-03

		merged
		UTR3
		284
		305.5370
		114.0000
		500.0000
		120.2095
		0.9297
		-0.1051
		4.3000e-01
		5.2556e-01

		merged
		unknown
		0
		0.0140
		0.0000
		0.0000
		0.3603
		0.9862
		-0.0201
		9.9800e-01
		9.9800e-01

		merged
		frameshift
		0
		0.0050
		0.0000
		0.0000
		0.0947
		0.9950
		-0.0072
		9.9700e-01
		9.9800e-01

		merged
		3flank
		800
		699.4930
		400.0000
		1045.0000
		187.2328
		1.1435
		0.1934
		3.0300e-01
		4.1662e-01

		merged
		CDS
		758
		392.1510
		192.0000
		611.0000
		131.0955
		1.9306
		0.9490
		3.0000e-03
		5.5000e-03

		merged
		flank
		1335
		176.1320
		50.0000
		350.0000
		90.7093
		7.5424
		2.9150
		1.0000e-03
		2.2000e-03

		merged
		5flank
		6224
		742.0590
		450.0000
		1071.0000
		191.1824
		8.3775
		3.0665
		1.0000e-03
		2.2000e-03

		merged
		UTR5
		3784
		104.0220
		0.0000
		237.0000
		68.5653
		36.0401
		5.1715
		1.0000e-03
		2.2000e-03

The first two columns contain the name of the track and
annotation that are being compared. The columns
observed and expected give the observed and expected
nucleotide overlap, respectively, between the track and annotation.

The following columns CI95low, CI95high, stddev give 95% confidence
intervals and the standard deviation of the sample distribution,
respectively.

The fold column is the fold enrichment or depletion and is
computed as the ratio of observed over expected. The
column l2fold is the log2 of this ratio.

The column pvalue gives the empirical p-value, i.e. in what
proportion of samples was a higher enrichment or lower depletion
found than the one that was observed.

The column qvalue lists a multiple testing corrected p-value.
Setting a qvalue threshold and accepting only those comparisons with a
qvalue below that threshold corresponds to controlling the false discovery
rate at that particular level.

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

CGATReference.html

 Navigation

 		
 index

 		
 modules |

 		CGAT documentation »

Tool reference

This page summarizes prominent tools within the CGAT Code
collection. The tools are grouped losely by functionality.

Genomic intervals/features

		<no title>

		Compute overlap statistics of multiple bed files.

		<no title>

		Transform interval data in a bed formatted file into a
fasta formatted file of sequence data.

		<no title>

		Convert between interval data. Convert a bed formatted
file to a gff or gtf formatted file.

		<no title>

		Work on gff formatted files with genomic features. This
tools sorts/renames feature files, reconciles chromosome names,
and more.

		<no title>

		Filter or merge interval data in a bed formatted file.

		<no title>

		Compare two sets of genomic intervals and output a list of
overlapping features.

		<no title>

		Compute summary statistics of genomic intervals.

		<no title>

		Annotate genomic intervals (composition, peak location, overlap, ...)

		<no title>

		Decompose multiple sets of genomic intervals into various
intersections and unions.

		<no title>

		Compare multiple sets of interval data sets. The tools computes
all-vs-all pairwise overlap summaries. Permits incremental updates
of similarity table.

		<no title>

		Convert between formats

		<no title>

		Split a file in gff format into smaller files. The script ensures
that overlapping intervals remain in the same file.

		<no title>

		This script computes the genomic coverage of intervals
in a gff formatted file. The coverage is computed
per feature.

		<no title>

		Output genomic sequences from intervals.

		<no title>

		Compute distributions of interval sizes, intersegmental distances
and interval ovelap from list of intervals.

		<no title>

		Summarize features within a gff formatted file.

		<no title>

		Convert between formats.

Gene sets

		<no title>

		Translate a gene set into genomic annotations such as introns,
intergenic regions, regulatory domains, etc.

		<no title>

		Annotate transcripts in a gtf formatted file. Annotations
can be in reference to a second gene set (fragments, extensions),
aligned reads (coverage, intron overrun, ...) or densities.

		<no title>

		Annotate each base in the genome according to its use within
a transcript. Outputs lists of junctions.

		<no title>

		Derive genomic intervals (intergenic regions, introns) from
a gene set.

		<no title>

		merge exons/transcripts/genes, filter transcripts/genes, rename
transcripts/genes, ...

		<no title>

		convert gene set in gtf format to tabular format.

		<no title>

		Compare two gene sets - output common and unique lists of genes.

		<no title>

		Compare multiple gene sets. The tools computes all-vs-all pairwise
overlap of exons, bases and genes. Permits incremental updates of
similarity table.

Sequence data

		<no title>

		Interleave paired reads from two fastq files into a single fasta file.

		<no title>

		Build an index for a fasta file. Pre-requisite for many CGAT tools.

		<no title>

		Count kmer content in a set of fasta sequences.

		<no title>

		Compute features of sequences in fasta formatted files

		<no title>

		Compare two sets of sequences. Outputs missing, identical
and fragmented sequences.

		<no title>

		Segment sequences based on G+C content, gaps, ...

		<no title>

		Concatentate sequences from multiple files.

		<no title>

		In-silico creation of variants of protein coding
sequences.

NGS data

		<no title>

		Compute meta-gene profiles from aligned reads in a bam
formatted file. Also accepts bed or bigwig
formatted files.

		<no title>

		Operate on bam formatted files - filtering, stripping,
setting flags.

		<no title>

		Convert bam formatted file of genomic alignments
into genomic intervals. Permits merging of paired read data
and filtering by insert-size.

		<no title>

		Save sequence and quality information from a bam
formatted file.

		<no title>

		Compute read densities over a collection of intervals. Also
accepts bed or bigwig formatted files.

		<no title>

		Compute summary statistics of a bam formatted file.

		<no title>

		Convert read coverage in a bam formatted file into
a wiggle or bigwig formatted file.

		<no title>

		Compute stats on exon over-/underrun and spliced reads.

		<no title>

		Compute coverage of reads within multiple interval types.

		<no title>

		Outputs side-by-side comparison of residue level counts
between multiple bam formatted files.

		<no title>

		Perform quality score conversion between fastq
formatted files.

		<no title>

		Interleave paired end data.

		<no title>

		Output bases below quality threshold, number of N’s, quality score distribution.

		<no title>

		Ensure that paired read fastq formatted files are consistent
after filtering on the individual files.

		<no title>

		Perform read-by-read comparison of two bam-files.

Variants

		<no title>

		Sort a vcf file.

Genomics

		<no title>

		How many residues to the same locations, do different locations,
etc.

		<no title>

		Output coverage statistics for a UCSC liftover chain file.

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/matrix2stats.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelines/pipeline_readqc.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		CGAT Pipelines »

 		NGS Pipelines »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/WrapperNJTree.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/gtf2table.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelinemodules/PipelineLncRNA.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/beds2beds.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/WrapperDialign.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/fastas2fasta.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/filter_reads.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelines/pipeline_ancestral_repeats.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		CGAT Pipelines »

 		NGS Pipelines »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/index_fasta.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/bam2UniquePairs.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/psl2psl.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/quality2masks.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/gtf2gff.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/data2stats.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/bed2stats.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/Wiggle.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/data2bins.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/data2histogram.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelinemodules/PipelineChipseq.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/compare_histograms.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/psl2fasta.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/align_mali_vs_mali.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/Synteny.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/rnaseq_junction_bam2bam.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/peptides2cds.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/csv_cut.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

_static/down.png

scripts/barplotGo.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/Expression.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/gff2table.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/cgat_cluster_distribute.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelinemodules/PipelineEnrichment.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/nofarm.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/bed2psl.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

_images/metagenome_contigs_tetra.png
Cluster Dendrogram

Laswonueiessspioisioeg
19 LuoiORIoElaU s SploIpoEE
ot uamuosiomieusapioiaceg
L zsivouonomaysepoisiong
L suciuosomeysepioiaea
L | sonuepes—sspioiaioeg

80} suonElEs-Seploisiaeg
LW Goonueies™sspiasaoeg

Zesonuepssapaiaeg

Ssspioizpeg
L sucioosiomisurseproisioeg

£15ns™snoooocidang,
|suoiouoRIopIaL ssploIsIoRg

£gUOIDIUCEIoEIEY s SploIEioRg

My
s
£
8
=
B
H
H

L6 oo oRIaLsspioIsioRg
L guonwosaeaysspoispoeg
SzucO IR s SpIoIEE
= Estuomuonioma sepoiases
H

1ns~snoooooidang
1ns~snooooodaig

ﬁﬁ\ Zisins~snooooaidang
sins—snosoocidang

esinssnoooocidang
1ns~snooooidan

sns~snoooooid
ins~snoocoaidan
uoiyuoeiope
— gsins~snososoid
— Lzsmssnoooocidang
#15ns"snoooocidang,
gsins~snosoocidans
szsins—snosoocidas
sins~snosoocidang
sins~snosoocidang

Zsins—snosoocidag
Zsins~snooooaidang
SELuCIIOBIOEIY s SploIEiRE

0Z0 SK0 0K0 %00 000

WBieH

distitdat))

ward")

helust (*,

scripts/diff_fasta.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

CGATInstallation.html

 Navigation

 		
 index

 		
 modules |

 		CGAT documentation »

Installation instructions

The section below describes how to install the CGAT scripts. Please
note that we can not test our code on all systems and configurations
out there. If something does not work, please try a CGAT Code Clean Installation
or download a copy of the CGAT Virtual Machine with all the software installed.

Quick installation

Pre-install dependencies

Installing CGAT can be straight-forward if all its dependencies are satisfied:

pip install cgat

However, CGAT depends on numerous other python packages which themselves might require
manual intervention. Please see Manual installation for a
step-by-step installation approach.

Initialization

In order to run pipelines and code directly from the CGAT script
repository, you need to perform the following initializations:

python setup.py develop --multi-version

This will compile all the extension modules without installing
anything. To use, add the CGAT directory to $PYTHONPATH
environment variable:

export PYTHONPATH=$PYTHONPATH:/location/to/cgat

You might also want to run the script:

python scripts/cgat_build_extensions.py

to test if all the scripts with associated cython [http://cython.org/] code compile
cleanly.

Manual installation

The CGAT installation requires setuptools version 1.1 or higher
to be installed. If your system has no setuptools installed, or
an old version, please install setuptools [https://pypi.python.org/pypi/setuptools] first by:

wget https://bitbucket.org/pypa/setuptools/raw/bootstrap/ez_setup.py -O - | python

CGAT depends on numerous other python packages not all of which
might install cleanly. Here, we give some more detailed instructions.
Generally we recommend when troubleshooting CGAT installation to do so
within a virtual environment. To create a clean environment, type:

virtualenv --no-site-packages cgat-python
source cgat-python/bin/activate

Now, download the list of required packages:

wget https://raw.github.com/CGATOxford/cgat/master/requires.txt

To install the required basic packages:

pip install -r requires.txt

Also, bx-python needs to be installed. The current version on pypi is
currently out of date, so to install, do:

pip install https://bitbucket.org/james_taylor/bx-python/get/tip.tar.bz2

If all of that works, installing the CGAT tools should now be
straight-forward:

pip install cgat

If you continue having problems with the installation please try the
CGAT Code Clean Installation guide or download a copy of the
CGAT Virtual Machine with all the software installed.

Troubleshooting

Some packages will require additional system-level packages to
be installed. The following depencies might cause problems:

		PyGreSQL

		requires postgres-devel

		PyGTK

		not installable via setuptools [https://pypi.python.org/pypi/setuptools], install separately.

		biopython [http://biopython.org/]

		pip occasionally fails for biopython [http://biopython.org/]. If so, try installing
manually.

CGAT Code Clean Installation

In this section you will find detailed information on how to install the CGAT
Code Collection and all its dependencies inside a newly created environment.

Installation instructions for the following operating systems are available:

		OS X installation

		Scientific Linux 6.X Installation

		Ubuntu 12.04 LTS Installation

Furthermore, we also provide a CGAT Virtual Machine.

Installing in Galaxy

CGAT tools can be used through the galaxy [https://main.g2.bx.psu.edu/] framework. In order
to set up the CGAT tool box in you own galaxy [https://main.g2.bx.psu.edu/] instance, use the
cgat2rdf.py script.

The sequence of commands is:

		Install Galaxy

		Install CGAT

		Run the cgat2rdf.py script (see <no title>) to create an xml file for inclusion into
galaxy [https://main.g2.bx.psu.edu/]. For example, to create a wrapper for bam2stats.py (see <no title>), run,
where cgat-xml is the location of tool xml files within galaxy [https://main.g2.bx.psu.edu/]:

python <cgat-scripts>cgat2rdf.py --format=galaxy <cgat-scripts>bam2stats.py > <cgat-xml>bam2stats.xml

		Add an entry to tool_conf.xml for the script within the
galaxy [https://main.g2.bx.psu.edu/] distribution:

<section name="CGAT Tools" id="cgat_tools">
 <tool file="<cgat-xml>/bam2stats.xml" />
</section>

A list of galaxy compatible scripts is in file galaxy.list. This file is part of the
CGAT repository and can be used to create all wrappers in one go:

cat galaxy.list
| cgat2rdf.py
 --source-dir=<cgat-scripts> --input-regex="(.*).py"
 --output-pattern=<galaxy-xml>/%s.xml --format=galaxy

Within galaxy [https://main.g2.bx.psu.edu/], CGAT scripts will use samtools [http://samtools.sourceforge.net/] formatted genomic
sequences, which are located in the sam_fa_indexes galaxy [https://main.g2.bx.psu.edu/] resource.

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/fasta2table.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/bam2peakshape.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/combine_histograms.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/tree_strain2species.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/Fastq.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelinemodules/PipelineRnaseq.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/fastq2N.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/diff_chains.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

_static/comment-bright.png

scripts/gtf2overlap.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/cgat_script_template.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/mali2mali.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/gff2psl.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/gff2view.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/bed2annotator.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/medip_merge_intervals.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/psl2chain.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/mysql_clone_database.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/Local.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/fasta2kmercontent.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

_static/plus.png

modules/WrapperCodeML.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/psl2assembly.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelines/pipeline_testing.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		CGAT Pipelines »

 		NGS Pipelines »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/gtfs2tsv.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/fastq2solid.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelines/pipeline_fusion.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		CGAT Pipelines »

 		NGS Pipelines »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/WrapperSPP.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/cgat_build_report_page.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelines/pipeline_capseq.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		CGAT Pipelines »

 		NGS Pipelines »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/data2roc.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

_static/cgat_logo.png
Py
e
Bo”

COMPUTATIONAL GENOMICS
ANALYSIS AND TRAINING

pipelinemodules/PipelineGO.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelinemodules/PipelineMedip.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

_static/minus.png

scripts/mali2malis.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/blast2table.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/cgat_ruffus_profile.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

search.html

 Navigation

 		
 index

 		
 modules |

 		CGAT documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/WrapperExonerate.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

_static/up-pressed.png

pipelines/pipeline_medip.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		CGAT Pipelines »

 		NGS Pipelines »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

recipes/metagenome_contigs_kmers.html

 Navigation

 		
 index

 		
 modules |

 		CGAT documentation »

Clustering metagenomic contigs on tetranucleotide frequency

Metagenomic sequencing has become a widely used method for assessing the
functional potential of microbial communities across a wide range of environments.
Often the first step in a metagenomic analysis is the assembly of short reads
into longer contigs - permitting gene/function predictions to be made. However, due to the
complexity of a sample, many contigs are often produced that represent a variety of species
that are present in the community. Assignment of contigs to species is non-trivial. Nevertheless,
researchers will often use nucleotide content to begin to cluster related contigs. A common
method is to compute tetranucleotide frequencies for each contig and cluster the results. Here
we explain how to use the CGAT script, fasta2kmercontent.py to calculate the tetranucleotide
frequencies for a set of contigs (up to 8-mers supported).

Our input is a fasta formatted file representing a set of contigs derived from a
metgenome assembly - metagenome_contigs.fasta. A simple command line statement will compute
the tetranucleotide frequency for the set of contigs:

cat metagenome_contigs.fa | fasta2kmercontent --kmer 4 --proportion > metagenome_tetranucleotide_freq.tsv

Notice that we specify the --proportion option in this example. This is because contigs
will be of different length and thus incomparable without this option.

The output will be a tab-delimited text file with contigs as columns and tetramers as rows.

		kmer
		Streptococcus_suis26
		Streptococcus_suis27
		Streptococcus_suis24
		Streptococcus_suis25
		Bacteroides_thetaiotaomicron101
		Bacteroides_thetaiotaomicron23

		GTAC
		0.0016393442623
		0.00234100663285
		0.00522778192681
		0.00265428002654
		0.00303990610329
		0.00334864510152

		CGAG
		0.0016393442623
		0.00195083886071
		0.00124470998257
		0.000663570006636
		0.00129694835681
		0.00128348645102

		GTAA
		0.00327868852459
		0.00390167772142
		0.0049788399303
		0.00729927007299
		0.0037646713615
		0.00467073264881

		CGAA
		0.00327868852459
		0.00429184549356
		0.00224047796863
		0.00199071001991
		0.00422828638498
		0.0042847216861

		AAAT
		0.0131147540984
		0.00819352321498
		0.00398307194424
		0.00729927007299
		0.00776115023474
		0.0080869296688

		CGAC
		0.0016393442623
		0.000390167772142
		0.00199153597212
		0.00132714001327
		0.00261443661972
		0.00177565042847

		GTAT
		0.00655737704918
		0.00156067108857
		0.00373412994772
		0.00398142003981
		0.00450704225352
		0.00579981471474

		AGTG
		0.0
		0.00546234880999
		0.00323624595469
		0.00398142003981
		0.00215962441315
		0.00340654674593

		AGTA
		0.00327868852459
		0.00429184549356
		0.00373412994772
		0.00331785003318
		0.00409330985915
		0.00409171620474

		...
		...
		...
		...
		...
		...
		...

As the output is in tab separated format it is straight-forward to load into statistical/plotting software such as R and perform further
downstream analysis. For example, we can perform a simple clustering analysis on the results. Start R and type:

R version 2.15.2 (2012-10-26) -- "Trick or Treat"
Copyright (C) 2012 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
Platform: x86_64-unknown-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> tetra <- read.csv("metagenome_tetranucleotide_freq.tsv", header = T, stringsAsFactors = F, sep = "\t", row.names = 1)
> plot(hclust(dist(t(dat))))

This will produce a cluster dendrogram like the one displayed below.

[image: ../_images/metagenome_contigs_tetra.png]
This example is using data from simulated metagenomic data and we therefore know the source of the contigs. We can see that it
is possible to separate Streptococcus species from Bacteroides based on tetranucleotide composition. There is less separation
between the two closely related bacteroides species. Although this example dataset is unrealistically simple, it emphasises
the ease with which CGAT tools can be used for quick assessment of data.

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/align_transcripts.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/bed2graph.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

_static/comment.png

scripts/malis2masks.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/tree2taxa.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

CGATRelease.html

 Navigation

 		
 index

 		
 modules |

 		CGAT documentation »

Release Notes

The code collection is under continuous improvement and the
latest code can always be found in the code repository.
Nevertheless, we occasionally prepare releases. Notes on
each release are below.

Release 0.2

		release for CGAT manuscript - fixed various installation issues

Release 0.1.9

		alignlib incompatibility fixed

		various bugfixes

Release 0.1.8

		OS X compatibility release

		various bugfixes

Contributors

The following people have contributed to the CGAT Code collection:

		Andreas Heger

		Antonio Berlanga-Taylor

		Martin Dienstbier

		Nicholas Ilott

		Jethro Johnson

		Katherine Fawcett

		Stephen Sansom

		David Sims

		Ian Sudbery

		Hu Xiaoming

		Lesheng Kong

3rd party code

The CGAT code collection has been made possible by the many developers
in the bioinformatics and python community that have made their code
available for sharing. The code collection includes some snippets of
code taken from elsewhere for convenience, most notably:

		IGV.py from Brent Petersen
https://github.com/brentp/bio-playground/blob/master/igv/igv.py

		Nested containment list from the Pygr project
http://code.google.com/p/pygr/

		SVGdraw.py was written by Fedor Baart & Hans de Wit

		list_overlap.py from Brent Petersen
https://github.com/brentp/bio-playground/blob/master/utils/list_overlap_p.py

		Iterators.py from an unknown source.

Licence

The CGAT code is released under the new BSD licence:

Copyright (c) 2013, Andreas Heger, MRC CGAT

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

 Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in
 the documentation and/or other materials provided with the
 distribution. Neither the name of the Medical Research Council nor the
 names of its contributors may be used to endorse or promote
 products derived from this software without specific prior written
 permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/RateEstimation.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/gff2bed.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/align_pairs.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/Masker.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

CGATInstallationVirtualBoxUbuntu.html

 Navigation

 		
 index

 		
 modules |

 		CGAT documentation »

CGAT Virtual Machine

CGAT also provides a virtual machine with the CGAT Code
Collection installed in Ubuntu 12.04 LTS. This virtual
machine has been created with VirtualBox [https://www.virtualbox.org]. If you do not
have VirtualBox installed, please go to the official page
to download and install a copy:

https://www.virtualbox.org/wiki/Downloads

You also need to download the CGAT virtual machine from:

http://www.cgat.org/downloads/cgat-vm.vmdk

To create a new CGAT virtual machine open VirtualBox
and go through these steps:

		Click New and type:
		Name: cgat-vm

		Type: Linux

		Version: Ubuntu (64 bit)

		RAM memory:
		Select: 1024 MB of RAM memory.

		Hard drive
		Select the option: Use an existing virtual hard drive file

		Click on the dialog and open the file cgat-vm.vmdk downloaded previously.

The CGAT virtual machine has been created. Power on this
machine by clicking Start. You may now want to launch
the terminal and start using the CGAT Code Collection.
To begin, type:

cgat --help

In case you need root access to this virtual machine, do:

sudo su

where the password is cgat.

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/bam2geneprofile.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/Prediction.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/WrapperDBA.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/psql_add_tables.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/WrapperPhylip.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/qkill.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelines/pipeline_intervals.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		CGAT Pipelines »

 		NGS Pipelines »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelines/pipeline_rnaseqtranscripts.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		CGAT Pipelines »

 		NGS Pipelines »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelines/pipeline_annotations.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		CGAT Pipelines »

 		NGS Pipelines »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/mali_plain2aln.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/gff2coverage.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/gtf2fasta.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/wig2wig.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/mali2kaks.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/tree2stats.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/graph2stats.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelines/pipeline_cufflinks_optimization.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		CGAT Pipelines »

 		NGS Pipelines »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/plot_data.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/csv_uniq.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelines/pipeline_polyphen.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		CGAT Pipelines »

 		NGS Pipelines »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/SVGDuplicationsWheel.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/introns2rates.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelines/pipeline_template.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		CGAT Pipelines »

 		NGS Pipelines »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/quality2fasta.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/gtf2reads.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelinemodules/PipelineUCSC.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/gtf2tsv.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/WrapperBlastZ.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/psql_clone_database.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/cgat_logfiles2tsv.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/mask_fasta.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/merge_tables.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/fasta2gff.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/bam2fastq.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelines/pipeline_expression.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		CGAT Pipelines »

 		NGS Pipelines »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/bam_vs_bam.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/tree2tree.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelines/pipeline_mappability.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		CGAT Pipelines »

 		NGS Pipelines »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/gff2histogram.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/diff_gtf.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

_images/H3K4me1_heatmap.png

modules/WrapperIDR.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/vcf2vcf.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelinemodules/PipelineTransfacMatch.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/mali2rates.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/clean.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/matrix2matrix.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/split_file.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelines/pipeline_chipseq.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		CGAT Pipelines »

 		NGS Pipelines »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/bed2bed.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelinemodules/PipelineMappingQC.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/add_random_reads_to_bam.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/snp2maf.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/bam_vs_bed.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/set_diff.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/convert_time2seconds.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/genome_bed.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/IndexedFasta.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelinemodules/PipelineGeneset.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/r_mann_whitney_u.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/farm.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/trees2tree.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/modify_table.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelines/pipeline_mapping_benchmark.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		CGAT Pipelines »

 		NGS Pipelines »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/SequenceProperties.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/fastq2fastq.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/bam2stats.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelinemodules/PipelineKEGG.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/fasta2nj.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/graph_combine_links_redundant.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/beds2counts.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/vcfstats2db.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/split_gff.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/extractseq.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/PredictionParser.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/Stats.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelines/pipeline_rnaseqdiffexpression.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		CGAT Pipelines »

 		NGS Pipelines »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

_static/comment-close.png

scripts/substitute_tokens.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/psl2wiggle_stats.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/trees2trees.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/check_db.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/calculate_histogram_2D.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/submit.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/snp2table.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/psl2map.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/go2svg.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

_static/ajax-loader.gif

pipelines/pipeline_liftover.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		CGAT Pipelines »

 		NGS Pipelines »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/Pipeline.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelines/pipeline_benchmark_rnaseqmappers.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		CGAT Pipelines »

 		NGS Pipelines »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

_static/down-pressed.png

modules/TreeTools.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/bed2table.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/gtfs2graph.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelines/pipeline_transfacmatch.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		CGAT Pipelines »

 		NGS Pipelines »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/cat_tables.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/genelist_analysis.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/rates2rates.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/cgat_import_extensions.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/intervaltable2bed.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelines/pipeline_variants.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		CGAT Pipelines »

 		NGS Pipelines »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/WrapperSlr.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelines/pipeline_variant_annotation.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		CGAT Pipelines »

 		NGS Pipelines »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

cgat.html

 Navigation

 		
 index

 		
 modules |

 		CGAT documentation »

CGAT - Computational Genomics Analysis Tools

CGAT is a collection of tools for the computational genomicist written
in the python language. The tools have been developed and accumulated in various
genome projects (Heger & Ponting, 2007 [http://www.cgat.org], Warren et al., 2008 [http://www.cgat.org]) and NGS projects
(Ramagopalan et al., 2010 [http://www.cgat.org]). The tools are continuously being developed
as part of the CGAT Training programme [http://www.cgat.org].

The tools work from the command line, but can readily be installed
within frameworks such as Galaxy [https://main.g2.bx.psu.edu/].

Please note that the tools are part of a larger code base also
including genomics and NGS pipelines. More information about those
is here.

Detailed instructions on installation, on usage and a tool reference
are below, followed by a Quickstart guide.

		Installation instructions
		Quick installation

		Manual installation

		CGAT Code Clean Installation

		Installing in Galaxy

		Using CGAT Tools
		Command line usage

		Indexing genomes

		Pipeline usage

		Using CGAT tools - Recipes
		Testing for Functional enrichment

		What is the binding profile of NFKB across gene models?

		Assessing CpG content in long non-coding RNA promoters

		Clustering metagenomic contigs on tetranucleotide frequency

		Tool reference
		Genomic intervals/features

		Gene sets

		Sequence data

		NGS data

		Variants

		Genomics

		Background
		Mission statement

		Other toolkits with similar functionality

		Contributing to CGAT code
		Checklist for new scripts/modules

		Building extensions

		Release Notes
		Release 0.2

		Release 0.1.9

		Release 0.1.8

		Contributors

		3rd party code

		Licence

Quickstart

To install the CGAT tools, type:

pip install cgat

This will install the CGAT scripts and libraries together with the
required dependencies. See Installation instructions for
dependencies and troubleshooting.

CGAT tools are run from the unix command line. Lets assume we have
the results of the binding locations of a ChIP-Seq experiment
(chipseq.hg19.bed) in bed format and we want to know, how many
binding locations are intronic, intergenic and within exons.

Thus, we need to create a set of genomic annotations denoting
intronic, intergenic regions, etc. with respect to a reference gene set.
Here, we download the GENCODE geneset (Harrow et al., 2012) in GTF
format from ENSEMBL (Flicek et al., 2013).

The following unix statement downloads the ENSEMBL gene set containing
over-lapping transcripts, and outputs a set of non-overlapping genomic
annotations in gff format (annotations.gff) by piping the data
through various GAT tools:

wget -qO- ftp://ftp.ensembl.org/pub/release-72/gtf/homo_sapiens/Homo_sapiens.GRCh37.72.gtf.gz
| gunzip
| awk '$2 == "protein_coding"'
| cgat gff2ff --genome-file=hg19 --sanitize=ucsc --skip-missing
| cgat gtf2gtf --sort=gene
| cgat gtf2gtf --merge-exons --with-utr
| cgat gtf2gtf --filter=longest-gene
| cgat gtf2gtf --sort=position
| cgat gtf2gff --genome-file=hg19 --flank=5000 --method=genome
| gzip
> annotations.gff.gz

Note

The statements above need an indexed genome. To create such an
indexed genome for hg19, type the following:

wget http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/chromFa.tar.gz
| index_fasta.py hg19 - > hg19.log

CGAT tools can be chained into a single work flow using unix
pipes. The above sequence of commands in turn (1) reconciles UCSC and
ENSEMBL naming schemes for chromosome names, (2) merges all exons of
alternative transcripts per gene, (3) keeps the longest gene in case
of overlapping genes and (4) annotates exonic, intronic, intergenic
and flanking region (size=5kb) within and between genes.

Note that the creation of annotations.gff.gz goes beyond
simple interval intersection, as gene structures have to be normalized
from multiple possible alternative transcripts to a single transcript
that is chosen by the user depending on what is most relevant for the
analysis.

Choosing different options can provide different sets of
answers. Instead of merging all exons per gene, the longest transcript
might be selected by replacing (2) with gtf2gtf
--filter=longest-transcript.
Or, instead of genomic annotations, regulatory domains such as defined by GREAT might be obtained by
removing (3) and replacing (4) with gtf2gff --method=great-domains.

The generated annotations in annotations.gff can then be used to count
the number of transcription factor binding sites using bed-tools or
other interval intersections. Here, we will use another CGAT tool,
gtf2table, to do the counting and classification:

zcat /ifs/devel/gat/tutorial/data/srf.hg19.bed
| cgat bed2gff --as-gtf
| cgat gtf2table --counter=classifier-chipseq --filename-gff=annotations.gff.gz

The scripts follow a consistent naming scheme centered around common
genomic formats. Because of the common genomic formats, the tools can
be easily combined with other tools such as bedtools [http://bedtools.readthedocs.org/en/latest/] (Quinlan and
Hall, 2010) or UCSC Tools [http://genome.ucsc.edu/admin/git.html] (Kuhn et al. 2013).

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/tree_species2genes.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/gff2gff.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelines/pipeline_transcriptome.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		CGAT Pipelines »

 		NGS Pipelines »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/solexa2stats.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelines/pipeline_rnaseqlncrna.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		CGAT Pipelines »

 		NGS Pipelines »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/tree2patterns.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

CGATInstallationUbuntu.html

 Navigation

 		
 index

 		
 modules |

 		CGAT documentation »

Ubuntu 12.04 LTS Installation

This installation steps have been tested in Ubuntu 12.04 LTS.The
Quick installation uses CGAT supplied scripts for
installation, while Manual installation lists all the
steps individually.

Quick installation

Get a copy of the installation scripts

Download and place them into your home directory:

cd
wget https://raw.github.com/CGATOxford/cgat/master/requires.txt
wget https://raw.github.com/CGATOxford/cgat/master/setup-DEBs.sh
wget https://raw.github.com/CGATOxford/cgat/master/setup-CGAT.sh

Install DEB dependencies

Become root (or ask your system administrator to do it for you) and run setup-DEBs.sh:

./setup-DEBs.sh

Install a Python virtual environment with the CGAT code collection

Do not be root for this step and run setup-CGAT.sh:

./setup-CGAT.sh

Test the installation

First activate the CGAT virtual environment:

source $HOME/CGAT/virtualenv-1.10.1/cgat-venv/bin/activate

Then, test the cgat command:

cgat --help

Finish the CGAT virtual environment

When you are done, you may deactivate the CGAT virtual environment:

deactivate

Manual installation

Install DEB dependencies

You can either install them one by one or all at the same time with apt-get:

apt-get install gcc # required by python
apt-get install zlib1g-dev # required by virtualenv
apt-get install libssl-dev # required by pip
apt-get install libbz2-dev # required by bx-python
apt-get install c++ # required by pybedtools
apt-get install libfreetype6-dev # required by matplotlib
apt-get install libpng12-dev # required by matplotlib
apt-get install libblas-dev # required by scipy
apt-get install libatlas-dev # required by scipy
apt-get install liblapack-dev # required by scipy
apt-get install gfortran # required by scipyi
apt-get install libpq-dev # required by PyGreSQL
apt-get install r-base-dev # required by rpy2
apt-get install libreadline-dev # required by rpy2
apt-get install libmysqlclient-dev # required by MySQL-python
apt-get install libboost-dev # required by alignlib
apt-get install libsqlite3-dev # required by CGAT

Build Python 2.7.5

Download and build your own, isolated Python installation:

cd
mkdir CGAT
wget http://www.python.org/ftp/python/2.7.5/Python-2.7.5.tgz
tar xzvf Python-2.7.5.tgz
rm Python-2.7.5.tgz
cd Python-2.7.5
./configure --prefix=$HOME/CGAT/Python-2.7.5
make
make install
cd
rm -rf Python-2.7.5

Create a virtual environment

Create an isolated virtual environment where all your Python packages will be installed:

cd
cd CGAT
wget --no-check-certificate https://pypi.python.org/packages/source/v/virtualenv/virtualenv-1.10.1.tar.gz
tar xvfz virtualenv-1.10.1.tar.gz
rm virtualenv-1.10.1.tar.gz
cd virtualenv-1.10.1
$HOME/CGAT/Python-2.7.5/bin/python virtualenv.py cgat-venv
source cgat-venv/bin/activate

Install Python dependencies

Use pip to install all the packages on which CGAT Code Collection depends on:

pip install cython
pip install numpy
pip install pysam
pip install https://bitbucket.org/james_taylor/bx-python/get/tip.tar.bz2
pip install biopython
pip install pybedtools
pip install matplotlib
pip install scipy
pip install -r https://raw.github.com/CGATOxford/cgat/master/requires.txt
pip install CGAT

Test CGAT Code Collection

If everything went fine with the previous steps you should be able to execute
the following command:

cgat --help

Finish the CGAT virtual environment

When you are done, you may deactivate the CGAT virtual environment:

deactivate

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/revigo.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/bed2gff.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/run_function.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/bam2bam.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/csv2db.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/diff_bed.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/mali2bootstrap.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/Motifs.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/WrapperClustal.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/Tree.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/liftover.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/gff_decorate.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/r_table2scatter.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/sequences2mali.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelinemodules/PipelineMotifs.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/combine_tables.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/mali_remove_gaps.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/Genomics.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/bam2transcriptContribution.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/MatrixTools.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/csv_set.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/fasta2bed.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/index2bed.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/plot_matrix.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelinemodules/PipelineUtilities.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/nr2table.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/join_tables.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/analyze_go.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelinemodules/PipelineBiomart.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/cgat2rdf.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/jalview.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/tree2matrix.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/Variants.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/chain2stats.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/fastqs2fastqs.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/gff2stats.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelines/pipeline_rnaseq.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		CGAT Pipelines »

 		NGS Pipelines »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/WrapperHmmer.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelinemodules/PipelineIntervalAnnotation.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/tree2plot.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelines/pipeline_peakcalling.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		CGAT Pipelines »

 		NGS Pipelines »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/Predictor.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/histograms2kl.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/malis2profiles.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/GO.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/WrapperBaseML.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelines/pipeline_chains.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		CGAT Pipelines »

 		NGS Pipelines »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/trees2sets.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/bam2wiggle.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/data2multiple_anova.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/simulate_function.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/maq2psl.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/histogram2histogram.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/Bed.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/GTF.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/tree_diff.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/tree2svg.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/WrapperMEDIPS.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/combine_gff.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/gtf2gtf.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/cgat_rebuild_extensions.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/analyze_readpositions.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

_static/up.png

scripts/csvs2csv.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

CGATUsage.html

 Navigation

 		
 index

 		
 modules |

 		CGAT documentation »

Using CGAT Tools

Command line usage

CGAT tools are written for command line usage with a consistent
interface that makes them amenable to integration in pipelines.
Tools can be accessed through the cgat front-end that will
be installed in your PATH.

To get a list of all available commands, type:

cgat --help

Command line help for individual tools is available through
each tool’s --help option:

cgat gff2gff --help

Logging

CGAT scripts output logging information as comments starting with a
into stdout or into a separate log file (--log).

Below is an example of logging output:

output generated by /ifs/devel/andreas/cgat/beds2beds.py --force --exclusive --method=unmerged-combinations --output-filename-pattern=030m.intersection.tsv.dir/030m.intersection.tsv-%s.bed.gz --log=030m.intersection.tsv.log Irf5-030m-R1.bed.gz Rela-030m-R1.bed.gz
job started at Thu Mar 29 13:06:33 2012 on cgat150.anat.ox.ac.uk -- e1c16e80-03a1-4023-9417-f3e44e33bdcd
pid: 16649, system: Linux 2.6.32-220.7.1.el6.x86_64 #1 SMP Fri Feb 10 15:22:22 EST 2012 x86_64
exclusive : True
filename_update : None
ignore_strand : False
loglevel : 1
method : unmerged-combinations
output_filename_pattern : 030m.intersection.tsv.dir/030m.intersection.tsv-%s.bed.gz
output_force : True
pattern_id : (.*).bed.gz
stderr : <open file \'<stderr>\', mode \'w\' at 0x2ba70e0c2270>
stdin : <open file \'<stdin>\', mode \'r\' at 0x2ba70e0c2150>
stdlog : <open file \'030m.intersection.tsv.log\', mode \'a\' at 0x1f1a810>
stdout : <open file \'<stdout>\', mode \'w\' at 0x2ba70e0c21e0>
timeit_file : None
timeit_header : None
timeit_name : all
tracks : None

The header contains information about:

		the script name (beds2beds.py)

		the command line options (--force --exclusive --method=unmerged-combinations --output-filename-pattern=030m.intersection.tsv.dir/030m.intersection.tsv-%s.bed.gz --log=030m.intersection.tsv.log Irf5-030m-R1.bed.gz Rela-030m-R1.bed.gz)

		the time when the job was started (Thu Mar 29 13:06:33 2012)

		the location it was executed (cgat150.anat.ox.ac.uk)

		a unique job id (e1c16e80-03a1-4023-9417-f3e44e33bdcd)

		the pid of the job (16649)

		the system specification (Linux 2.6.32-220.7.1.el6.x86_64 #1 SMP Fri Feb 10 15:22:22 EST 2012 x86_64)

Once completed successfully, a script will output to the logfile. Below is typical output:

job finished in 11 seconds at Thu Mar 29 13:06:44 2012 -- 11.36 0.45 0.00 0.01 -- e1c16e80-03a1-4023-9417-f3e44e33bdcd

The footer contains information about:

		the job has finished (job finished)

		the time it took to execute (11 seconds)

		when it completed (Thu Mar 29 13:06:44 2012)

		
		some benchmarking information (11.36 0.45 0.00 0.01) which is

		user time, system time, child user time, child system time.

		the unique job id (e1c16e80-03a1-4023-9417-f3e44e33bdcd)

The unique job id can be used to easily retrieve matching information from a concatenation of
log files.

The logging level can be determined by the --verbose option. A
level of 0 means no logging output, while 1 is information
messages only, while 2 outputs also debugging information.

I/O redirection

Most scripts work by reading data from stdin and outputting
data to stdout. Both can be redirected to files with the
-I/--stdin and -O/--stdout options. stderr can be
redirected with -E/--stderr.

Indexing genomes

Many CGAT tools require genomic information, some require the actual
genomic sequence, but many require information about chromosome sizes.
Thus, many tools have the obligatory option --genome-file.

The genome-file argument points to an indexed fasta file. CGAT
tools can read two different indices, either files indexed using
the supplied <no title> script or using the samtools [http://samtools.sourceforge.net/]
faidx command.

Pipeline usage

We use a light-weight workflow system called ruffus [http://www.ruffus.org.uk/], but others
are equally possible such as galaxy [https://main.g2.bx.psu.edu/] (see Installing in Galaxy).
These tools allow CGAT tools to run in an automated fashion.

Using unix pipes, CGAT tools can also be easily run in a parallel
fashion. For example, we have a script called farm.py (not part
of the CGAT collection, but within the CGAT repository), that allows
to split input data and run separate chunks on our compute
cluster. Below is a simple example of running the command:

zcat geneset.gtf.gz
| cgat gtf2table --counter=length --log=log |
gzip > out.tsv.gz

in parallel on the cluster, running one job per chromosome:

zcat geneset.gtf.gz
| farm.py --split-at-column=1
 "cgat gtf2table --counter=length --log=log"
| gzip
> out.tsv.gz

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/bed2fasta.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/tree_collapse_species.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/bam_vs_gtf.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/AlignedPairs.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/snp2counts.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/Bioprospector.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/csv_rename.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/fasta2variants.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/sparse2full.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelinemodules/PipelineAnnotator.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/rename_links.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/align_all_vs_all.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/malis2malis.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelines/pipeline_mapping.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		CGAT Pipelines »

 		NGS Pipelines »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/plot_histogram.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/snp2snp.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/matrix2tree.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/psl2gff.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/gtf2alleles.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

CGATInstallationSL6.html

 Navigation

 		
 index

 		
 modules |

 		CGAT documentation »

Scientific Linux 6.X Installation

Scientific Linux is a Red Hat Enterprise Linux-based operating
system and therefore the instructions below should apply to all
other derivatives as well.

The Quick installation uses CGAT supplied scripts for
installation, while Manual installation lists all the
steps individually.

Quick installation

Get a copy of the installation scripts

Download and place them into your home directory:

cd
wget https://raw.github.com/CGATOxford/cgat/master/requires.txt
wget https://raw.github.com/CGATOxford/cgat/master/setup-RPMs.sh
wget https://raw.github.com/CGATOxford/cgat/master/setup-CGAT.sh

Install RPM dependencies

Become root (or ask your system administrator to do it for you) and run setup-RPMs.sh:

./setup-RPMs.sh

Install a Python virtual environment with the CGAT code collection

Do not be root for this step and run setup-CGAT.sh:

./setup-CGAT.sh

Test the installation

First activate the CGAT virtual environment:

source $HOME/CGAT/virtualenv-1.10.1/cgat-venv/bin/activate

Then, test the cgat command:

cgat --help

Finish the CGAT virtual environment

When you are done, you may deactivate the CGAT virtual environment:

deactivate

Manual installation

Install RPM dependencies

You can either install them one by one or all at the same time with yum:

yum install gcc # required by python
yum install zlib-devel # required by virtualenv
yum install openssl-devel # required by pip
yum install bzip2-devel # required by bx-python
yum install gcc-c++ # required by pybedtools
yum install freetype-devel # required by matplotlib
yum install libpng-devel # required by matplotlib
yum install blas atlas lapack # required by scipy
yum install gcc-gfortran # required by scipyi
yum install postgresql-devel # required by PyGreSQL
yum install R-core-devel # required by rpy2
yum install readline-devel # required by rpy2
yum install mysql-devel # required by MySQL-python
yum install boost-devel # required by alignlib
yum install sqlite-devel # required by CGAT

Please note that you may also need the EPEL (Extra Packages for Enterprise Linux) repository to install R:

yum install epel-release

Now type this additional commands to get scipy working:

ln -s /usr/lib64/libblas.so.3 /usr/lib64/libblas.so
ln -s /usr/lib64/libatlas.so.3 /usr/lib64/libatlas.so
ln -s /usr/lib64/liblapack.so.3 /usr/lib64/liblapack.so

Build Python 2.7.5

Download and build your own, isolated Python installation:

cd
mkdir CGAT
wget http://www.python.org/ftp/python/2.7.5/Python-2.7.5.tgz
tar xzvf Python-2.7.5.tgz
rm Python-2.7.5.tgz
cd Python-2.7.5
./configure --prefix=$HOME/CGAT/Python-2.7.5
make
make install
cd
rm -rf Python-2.7.5

Create a virtual environment

Create an isolated virtual environment where all your Python packages will be installed:

cd
cd CGAT
wget --no-check-certificate https://pypi.python.org/packages/source/v/virtualenv/virtualenv-1.10.1.tar.gz
tar xvfz virtualenv-1.10.1.tar.gz
rm virtualenv-1.10.1.tar.gz
cd virtualenv-1.10.1
$HOME/CGAT/Python-2.7.5/bin/python virtualenv.py cgat-venv
source cgat-venv/bin/activate

Install Python dependencies

Use pip to install all the packages on which CGAT Code Collection depends on:

pip install cython
pip install numpy
pip install pysam
pip install https://bitbucket.org/james_taylor/bx-python/get/tip.tar.bz2
pip install biopython
pip install pybedtools
pip install matplotlib
pip install scipy
pip install -r https://raw.github.com/CGATOxford/cgat/master/requires.txt
pip install CGAT

Test CGAT Code Collection

If everything went fine with the previous steps you should be able to execute
the following command:

cgat --help

Finish the CGAT virtual environment

When you are done, you may deactivate the CGAT virtual environment:

deactivate

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/mali2summary.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/png2svg.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/r_compare_distributions.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/csv2csv.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/filter_tokens.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelines/pipeline_exome.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		CGAT Pipelines »

 		NGS Pipelines »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/cgat_log2wiki.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/SequencePairProperties.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/fastq2table.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/Blat.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

_images/H3K4me3_heatmap.png

scripts/chain2psl.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/graph_links2gdl.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

CGATRecipes.html

 Navigation

 		
 index

 		
 modules |

 		CGAT documentation »

Using CGAT tools - Recipes

In this section you will find representative examples for using tools developed in
CGAT. The recipes presented aim to provide intuitive real-life examples of CGAT script use for
the analysis of genomic datasets. If there is a tool in the CGAT collection for which you
would like a use case then please post a request on the CGAT users group [https://groups.google.com/forum/?fromgroups#!forum/cgat-user-group] website.

		Testing for Functional enrichment

		What is the binding profile of NFKB across gene models?
		Visulazing ChIP-seq read coverage across NFKB binding intervals

		Assessing CpG content in long non-coding RNA promoters

		Clustering metagenomic contigs on tetranucleotide frequency

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelines/pipeline_fastqToBigWig.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		CGAT Pipelines »

 		NGS Pipelines »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

recipes/lncrna_cpg.html

 Navigation

 		
 index

 		
 modules |

 		CGAT documentation »

Assessing CpG content in long non-coding RNA promoters

The description of pervasive transcription across many mammalian genomes has sparked an interest
in the role of long non-coding RNAs in diverse biological systems. Transcripts derived from non-coding
loci have been shown to be important in a number of different processes including development and cancer.
However, some features that are normally associated with protein coding genes are not observed in lncRNAs e.g
they are less conserved. Protein coding gene promoters have a characteristically high GC content and CpG
density. But do lncRNAs display the same bias in their promoters? In this example we show you how to use
CGAT tools to answer this question. We will be using:

gtf2gtf.py
gtf2gff.py
gff2bed.py
bed2fasta.py
fasta2table.py

Our initial input file is a gtf formatted file containing genomic coordinates and annotations for
a set of lncRNAs - lncRNA.gtf.gz. We can compute the GC and CpG composition using a single command line
statement using multiple CGAT tools. However, as described in Quickstart, we require an CGAT indexed
genome as input to both gtf2gff.py and bed2fasta.py. The first step is therefore to create the indexed genome.

In our example our lncRNA transcript models are from an RNA-seq experiment in human cells. We can index the
human hg19 reference genome by downloading the fasta formatted genome from the UCSC website
and running index_fasta.py:

wget http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/chromFa.tar.gz | index_fasta.py hg19 > hg19.log

We can then use this indexed genome as additional input when required. The code to generate a table with GC content and CpG
composition looks like:

zcat lncRNA.gtf.gz
| gtf2gtf.py --sort=gene
| gtf2gtf.py --merge-transcripts
| gtf2gff.py --genome-file=hg19 --method=promotors -p 1500 --sort
| gff2bed.py
| bed2fasta.py --genome-file=hg19
| fasta2table.py --section=cpg
| gzip
> lncRNA_cpg.tsv.gz

The above commands in turn (1) sorts the input file by gene identifier, (2) merges transcripts that have the same gene identifier,
(3) produces a set of lncRNA promoters 1.5Kb upstream of the lncRNA transcription start sites
(using --method=promotors in combination with -p 1500), (4) converts gff formatted promoters into bed format,
(5) retrieves sequences from the human hg19 reference genome for lncRNA promoter intervals and (5) outputs statistics related
to nucleotide composition including CpG content (specified with the --section=cpg option).
The output file lncRNA_cpg.tsv.gz will be a tab-delimited text file which will look like:

		id
		nC
		nG
		nA
		nT
		nN
		nUnk
		nGC
		nAT
		nCpG
		pC
		pG
		pA
		pT
		pN
		pUnk
		pGC
		pAT
		pCpG
		CpG_ObsExp

		ENSG00000224969.1 chr1:948573..950073 (+)
		423
		518
		277
		282
		0
		0
		941
		559
		71
		0.282000
		0.345333
		0.184667
		0.188000
		0.000000
		0.000000
		0.627333
		0.372667
		0.094667
		0.486048

		NONCO170 chr1:33464145..33465645 (+)
		418
		396
		359
		327
		0
		0
		814
		686
		37
		0.278667
		0.264000
		0.239333
		0.218000
		0.000000
		0.000000
		0.542667
		0.457333
		0.049333
		0.335291

		NONCO195 chr1:87239820..87241320 (+)
		354
		294
		425
		427
		0
		0
		648
		852
		13
		0.236000
		0.196000
		0.283333
		0.284667
		0.000000
		0.000000
		0.432000
		0.568000
		0.017333
		0.187363

		NONCO55 chr1:108591390..108592890 (+)
		296
		323
		471
		410
		0
		0
		619
		881
		9
		0.197333
		0.215333
		0.314000
		0.273333
		0.000000
		0.000000
		0.412667
		0.587333
		0.012000
		0.141202

		NONCO59 chr1:111181220..111182720 (+)
		270
		380
		452
		398
		0
		0
		650
		850
		9
		0.180000
		0.253333
		0.301333
		0.265333
		0.000000
		0.000000
		0.433333
		0.566667
		0.012000
		0.131579

		NONCO215 chr1:120190857..120192357 (+)
		350
		415
		384
		351
		0
		0
		765
		735
		62
		0.233333
		0.276667
		0.256000
		0.234000
		0.000000
		0.000000
		0.510000
		0.490000
		0.082667
		0.640275

		NONCO66 chr1:121117751..121119251 (+)
		374
		313
		340
		473
		0
		0
		687
		813
		16
		0.249333
		0.208667
		0.226667
		0.315333
		0.000000
		0.000000
		0.458000
		0.542000
		0.021333
		0.205020

		NONCO69 chr1:144569176..144570676 (+)
		233
		299
		498
		470
		0
		0
		532
		968
		21
		0.155333
		0.199333
		0.332000
		0.313333
		0.000000
		0.000000
		0.354667
		0.645333
		0.028000
		0.452151

		NONCO70 chr1:144592229..144593729 (+)
		382
		382
		361
		375
		0
		0
		764
		736
		53
		0.254667
		0.254667
		0.240667
		0.250000
		0.000000
		0.000000
		0.509333
		0.490667
		0.070667
		0.544804

The --section option specifies that we want to include statistics on CpG composition in the output. Alternative options
include:

length
na
aa
cpg
degeneracy
bias
codons
codon-usage
codon-translator
sequence

As the output is in tab separated format it is straight-forward to load into statistical/plotting software such as R and perform further
downstream analysis.

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/map_residues.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/table2table.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/psl2wiggle.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/sequence2alignment.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

recipes/nfkb_profile.html

 Navigation

 		
 index

 		
 modules |

 		CGAT documentation »

What is the binding profile of NFKB across gene models?

After processing RNA-seq data through alignment, gene/transcript abundance estimation and differential
expression analysis, we are left with an unannotated list of differentially expressed genes. We may want
to know whether there is evidence to suggest that these genes are regulated by a transcription factor
of interest. We can answer this using ChIP-seq data that we ourselves have generated or by using
public resources such as ENCODE.

For example, we have carried out an RNA-seq experiment in lymphoblastoid cell lines (LCLs) looking at
the effect of TNF-a stimulation on gene expression. Using one of the many tools for conducting
differential expression analysis we have arrived at a set of 133 genes that are up-regulated when
LCLs are stimulated with TNF-a.

We know that the main transcription factor that drives expression of inflammatory genes using other
immune stimulators is NFKB. We would therefore like to answer the question:

Is there evidence to support a role for NFKB in the regulation of genes regulated by TNF-a in LCLs?

ENCODE have produced many ChIP-seq data sets and by a stroke of luck they have NFKB ChIP-seq data in
TNF-a stimulated LCLs. In an exploratory phase of the analysis, we would like to see what the profile
of NFKB binding is across genes i.e does it bind predominantly at the TSS, exons or 3’ UTR. We
can do this fairly easily with a few files and a few commands.

The input files that we require are:

		A gtf file containing a complete set of known protein coding gene transcripts, which may
be downloaded from ENSEMBL by typing:

wget ftp://ftp.ensembl.org/pub/release-73/gtf/homo_sapiens/Homo_sapiens.GRCh37.73.gtf.gz -o logfile

		A file containing aligned NFKB ChIP-seq reads in bam format, which is available via UCSC:

wget http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeSydhTfbs/wgEncodeSydhTfbsGm10847NfkbTnfaIggrabAlnRep1.bam -o logfile

wget http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeSydhTfbs/wgEncodeSydhTfbsGm10847NfkbTnfaIggrabAlnRep1.bam.bai -o logfile

We can then take all protein coding genes from this geneset with an awk statement:

zcat Homo_sapiens.GRCh37.73.gtf.gz | awk '$2=="protein_coding"' | gzip > coding_geneset.gtf.gz

Using the CGAT tool bam2geneprofile we can then assess the binding profile of NFKB across gene models:

cgat bam2geneprofile --bamfile=wgEncodeSydhTfbsGm10847NfkbTnfaIggrabAlnRep1.bam
 --gtffile=coding_geneset.gtf.gz
 --method=geneprofile
 --profile_normalization=counts
 --output-filename-pattern=nfkb_profile_%s

This statement will produce a matrix as an output file named “nfkb_profile.geneprofile.matrix.tsv.gz”
with the following format:

		bin
		region
		region_bin
		counts

		0
		upstream
		0
		0.22691292876

		1
		upstream
		1
		0.224274406332

		2
		upstream
		2
		0.221635883905

		3
		upstream
		3
		0.192612137203

		4
		upstream
		4
		0.221635883905

		5
		upstream
		5
		0.213720316623

		6
		upstream
		6
		0.213720316623

		7
		upstream
		7
		0.200527704485

		8
		upstream
		8
		0.20580474934

These data are amenable to further manipulation and visualisation. For example, we can use R to produce a profile plot
over the gene model. Start R and type:

R version 2.15.2 (2012-10-26) -- "Trick or Treat"
Copyright (C) 2012 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
 Platform: x86_64-unknown-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> profile <- read.csv("nfkb_profile.geneprofile.matrix.tsv.gz", header = T, stringsAsFactors = F, sep = "\t")

> plot(profile$bin, profile$counts, cex = 0, xaxt = "none")

> lines(profile$bin, profile$counts, col = "blue")

> abline(v = c(1000, 2000), lty = 2)

> mtext("upstream", adj = 0.1)

> mtext("exons", adj = 0.5)

> mtext("downstream", adj = 0.9)

This set of commands will produce the figure shown.

[image: ../_images/nfkb_profile.pdf]
This plot displays the predominance of NFKB binding at transcription start sites of protein coding genes.

Visulazing ChIP-seq read coverage across NFKB binding intervals

While NFKB binds to the TSSs of protein coding genes, it also binds to many intergenic regions of the genome. In addition
to meta-gene profiles we may also want to know the chromatin state at which NFKB binding occurs. For example, we can
integrate additional histone modification ChIP-seq data from the ENCODE project. H3K4me3 and H3K4me1 mark promoters and
enhancers, respectively. We would like to visualise the profile of these marks at all the genomic locations of
NFKB binding.

For this example we require three further files:

		A file containing bed intervals describing NFKB peaks (NFKB.bed [http://www.cgat.org/~jethro/cgat/recipes/nfkb_profile/nfkb.bed]), which may either be downloaded directly or
created from the earlier bam file of NFKB ChIP-seq reads using a peak caller such as MACS.

		files containing aligned H3K4me1 and H3K4me3 ChIP-seq reads in bam format (H3K4me3.bam [http://www.cgat.org/~jethro/cgat/recipes/nfkb_profile/H3K4me3.bam], H3K4me1.bam [http://www.cgat.org/~jethro/cgat/recipes/nfkb_profile/H3K4me1.bam])

Using the CGAT tool bam2peakshape it is possible to produce a matrix depicting read coverage across all intervals in
the supplied bed file.

The following command line statement

		finds the peak of H3K4me3 read coverage within each interval

		calculates coverage across a 1000bp window centered around this peak

		outputs a matrix in which intervals are ranked by peak height.

		outputs an equivalent matrix depicting H3K4me1 coverage across the same windows:

cgat bam2peakshape H3K4me3.bam
 NFKB.bed
 --control=H3K4me1.bam
 --sort=peak-height
 --output-filename-pattern=peakshape.%s
 > peakshape.table

Two files are produced named peakshape.matrix_peak_height.gz & peakshape.control_peak_height.gz that contain matrices
depicting H3K4me3 coverage and H3K4me1 coverage across intervals, respectively.

Both matrices are amenable to plotting as heatmaps using the R package gplots:

> library(gplots)

> library(RColorBrewer)

> # read the H3K4me3 matrix into R
> me3 <- read.csv("peakshape.matrix_peak_height.gz", header=TRUE, sep="\t", row.names=1)

> # convert to matrix
> me3.matrix <- as.matrix(me3)

> # A proportion of NFkB intervals have no discernable H3K4me3 or H3K4me1 coverage. These are removed before plotting.
> me3.matrix <- me3.matrix[c(4000, 14906),]

> # the remainder are plotted
> cols <- brewer.pal(9, "Blues")

> heatmap.2(me3.matrix, col=cols, Rowv=F, Colv=F, labRow="", key=FALSE, labCol="", trace="none", dendrogram="none", breaks=seq(0, 1000, 101))

> # A second plot can be produced for the H3K4me1 data
> me1 <- read.csv("peakshape.control_peak_height.gz", header=T, sep="\t", row.names=1)

> me1.matrix <- as.matrix(me3)

> me1.matrix <- me1.matrix[c(4000, 14906),]

> cols <- brewer.pal(9, "Greens")

> heatmap.2(me1.matrix, col=cols, Rowv=F, Colv=F, labRow="", key=FALSE, labCol="", trace="none", dendrogram="none", breaks=seq(0, 100, 11))

The resulting plots indicate that a subset of NFKB binding intervals may be characterised on the basis of their chromatin state:

[image: ../_images/H3K4me3_heatmap.png]
H3K4me3

[image: ../_images/H3K4me1_heatmap.png]
H3K4me1

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/diff_bam.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/WrapperGblocks.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/PredictionFile.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/gff2fasta.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelinemodules/PipelineDatabase.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/bam2bed.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

pipelinemodules/PipelinePeakcalling.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/compare_clusters.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

CGATMissionStatement.html

 Navigation

 		
 index

 		
 modules |

 		CGAT documentation »

Background

Mission statement

The CGAT code collection has been written over several years in
the context of comparative genomics and more recently next-generation
sequencing analysis.

The aim of the toolkit is to solve practical problems in the analysis
of genomic data. The focus of the toolkit is to facilitate the
interpretation of genomic data in a biological context. Furthermore,
as a training institution our aim is to write code that is well
structured and can serve as an introduction to advanced bioinformatic
scripting for biologists.

Other toolkits with similar functionality

The CGAT code collection extends, complements but also overlaps
various other toolkits. As all toolkits, and ours, continue to evolve,
this is a very dynamic relationship. For example, our workflows frequently
use other toolkits, in particular bedtools [http://bedtools.readthedocs.org/en/latest/] and the UCSC tools [http://genome.ucsc.edu/admin/git.html], for
high-performance computations. Usage of common genomic file formats
and a command line interface ensures compatibility.

Below is a list of toolkits with similar or complementarity
functionality to the CGAT code collection and quotes from their
respective web-sites:

		bedtools [http://bedtools.readthedocs.org/en/latest/]
The BEDTools utilities allow one to address common genomics tasks such
as finding feature overlaps and computing coverage. The utilities are
largely based on four widely-used file formats: BED, GFF/GTF, VCF, and
SAM/BAM. Using BEDTools, one can develop sophisticated pipelines that
answer complicated research questions by “streaming” several BEDTools
together.

		samtools [http://samtools.sourceforge.net/]
SAM Tools provide various utilities for manipulating alignments in
the SAM format, including sorting, merging, indexing and generating
alignments in a per-position format.

		UCSC tools [http://genome.ucsc.edu/admin/git.html]
Jim Kent’s [http://users.soe.ucsc.edu/~kent/] genomic utilities
for working with genomic features and alignments.

		EMBOSS [http://emboss.sourceforge.net/]
EMBOSS is “The European Molecular Biology Open Software Suite”. EMBOSS
is a free Open Source software analysis package specially developed
for the needs of the molecular biology (e.g. EMBnet) user
community. The software automatically copes with data in a variety of
formats and even allows transparent retrieval of sequence data from
the web. Also, as extensive libraries are provided with the package,
it is a platform to allow other scientists to develop and release
software in true open source spirit. EMBOSS also integrates a range of
currently available packages and tools for sequence analysis into a
seamless whole. EMBOSS breaks the historical trend towards commercial
software packages.

		GROK [http://csbi.ltdk.helsinki.fi/grok/]
GROK (Genomic Region Operation Toolkit) is “Swiss Army knife” library
for processing genomic interval data. GROK operates on genomic
regions, annotated chromosomal intervals that represent sequencing
short reads, gene locations, ChIP-seq peaks or other genomic
features. Applications of GROK include file format conversions, set
operations, overlap queries, and filtering and transformation
operations. Supported file formats include BAM/SAM, BED, BedGraph,
CSV, FASTQ, GFF/GTF, VCF and Wiggle.

		biopieces [https://code.google.com/p/biopieces/]
The Biopieces are a collection of bioinformatics tools that can be
pieced together in a very easy and flexible manner to perform both
simple and complex tasks. The Biopieces work on a data stream in such
a way that the data stream can be passed through several different
Biopieces, each performing one specific task: modifying or adding
records to the data stream, creating plots, or uploading data to
databases and web services.

		fastx-toolkit [http://hannonlab.cshl.edu/fastx_toolkit/]
The FASTX-Toolkit is a collection of command line tools for
Short-Reads FASTA/FASTQ files preprocessing.

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/mali2table.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/csv_intersection.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/table2graph.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/psl2stats.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/gff2plot.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/tree_map_leaves.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/malis2mali.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/csv2xls.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

modules/SVGTree.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Modules »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

scripts/r_test.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		CGAT documentation »

 		Scripts »

 © Copyright 2011, Andreas Heger.
 Created using Sphinx 1.1.3.

